A low-power IEEE 802.15.4z high-rate PHY (HRP) compatible coherent transmitter is described. The proposed transmitter uses a digital polar architecture with fixed amplitude steps in the power amplifier and asynchronous time-discrete pulse shaping. The pulse-shaping unit consists of a finite-impulse response (FIR) filter using current-starved inverter-based delay taps that can be calibrated on-chip. An injection-locked ring oscillator (ILRO)-based frequency synthesis enables wideband operation from 3-to 10-GHz frequency bands. The ILRO also allows for duty-cycled coherent mode operation with 2-4-ns phase locking time and binary phase modulation is applied directly on the oscillator. The on-chip digital front end enables duty cycling (DC) of analog front-end modules with a granularity of 2 ns. Implemented in 28-nm CMOS process, this chip is measured to consume 4.9-mW power in nominal mode with IEEE 802.15.4z high pulse repetition frequency (HPRF) compatible data rate of 6.81 Mb/s compliant with major spectrum mask regulations for channels 5 and 9. With DC of the oscillator enabled in the energy-efficient mode, a power consumption of 430 µW is achieved for packets compatible with legacy pulseposition-modulated IEEE 802.15.4a standard with a data rate of 27.2 Mb/s.
published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.