To constrain the latest evolutionary stages and mechanisms of exhumation and emplacement of subcontinental peridotites in the westernmost Mediterranean, we present here a detailed structural study of the transition from granular spinel peridotite to plagioclase tectonite in the western Ronda Peridotite (Betic Cordillera, southern Spain). We show that the plagioclase tectonite foliation represents an axial surface particularly well developed in the reverse limb of a downward facing moderately plunging and moderately inclined synform at the base of the Ronda massif. The fold limbs are cut by several mylonitic and ultramylonitic shear zones with top-to-the-SW sense of shear. After restoring the middle to late Miocene vertical-axis palaeomagnetic rotation and the early Miocene tectonic tilting of the massif, these studied structures record southward-directed kinematics. We propose a geodynamic model in which folding and shearing of an attenuated mantle lithosphere occurred by backarc basin inversion during late Oligocene (23–25 Ma) southward collision of the Alborán Domain with the palaeo-Maghrebian passive margin, leading to the intracrustal emplacement of peridotites in the earliest Miocene (21–23 Ma).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.