Fiji is a distribution of the popular Open Source software ImageJ focused on biological image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image processing algorithms. Fiji facilitates the transformation of novel algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
Animal transcriptomes are dynamic, each cell type, tissue and organ system expressing an ensemble of transcript isoforms that give rise to substantial diversity. We identified new genes, transcripts, and proteins using poly(A)+ RNA sequence from Drosophila melanogaster cultured cell lines, dissected organ systems, and environmental perturbations. We found a small set of mostly neural-specific genes has the potential to encode thousands of transcripts each through extensive alternative promoter usage and RNA splicing. The magnitudes of splicing changes are larger between tissues than between developmental stages, and most sex-specific splicing is gonad-specific. Gonads express hundreds of previously unknown coding and long noncoding RNAs (lncRNAs) some of which are antisense to protein-coding genes and produce short regulatory RNAs. Furthermore, previously identified pervasive intergenic transcription occurs primarily within newly identified introns. The fly transcriptome is substantially more complex than previously recognized arising from combinatorial usage of promoters, splice sites, and polyadenylation sites.
Genome sequences for most metazoans and plants are incomplete because of the presence of repeated DNA in the heterochromatin. The heterochromatic regions of Drosophila melanogaster contain 20 million bases (Mb) of sequence amenable to mapping, sequence assembly, and finishing. We describe the generation of 15 Mb of finished or improved heterochromatic sequence with the use of available clone resources and assembly methods. We also constructed a bacterial artificial chromosome-based physical map that spans 13 Mb of the pericentromeric heterochromatin and a cytogenetic map that positions 11 Mb in specific chromosomal locations. We have approached a complete assembly and mapping of the nonsatellite component of Drosophila heterochromatin. The strategy we describe is also applicable to generating substantially more information about heterochromatin in other species, including humans.Heterochromatin is a major component of metazoan and plant genomes (e.g., ~20% of the human genome) that regulates chromosome segregation, nuclear organization, and gene expression (1-4). A thorough description of the sequence and organization of heterochromatin is necessary for understanding the essential functions encoded within this region of the genome. However, difficulties in cloning, mapping, and assembling regions rich in repetitive elements have hindered the genomic analysis of heterochromatin (5-7). The fruit fly Drosophila melanogaster is a model for heterochromatin studies. About one-third of the genome is considered heterochromatic and is concentrated in the pericentromeric and telomeric regions of the chromosomes (X, 2, 3, 4, and Y) (5,8). The heterochromatin contains tandemly repeated simple sequences (including satellite DNAs) (9), middle repetitive elements [such as transposable elements (TEs) and ribosomal DNA], and some single-copy DNA (10).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.