A estimativa da disponibilidade hídrica em uma bacia é uma das principais informações que alicerça a correta gestão dos recursos hídricos. Considerando-se a importância de se atender as regiões com ausência ou escassez de monitoramento fluviométrico, desenvolveu-se no presente estudo a construção de modelos matemáticos de regionalização de vazões para diversas bacias do Estado de Sergipe. Contudo, essa metodologia tem limitações quando os dados hidrométricos disponíveis são muito escassos ou quando a bacia possui grande variabilidade fisiográfica e climatológica, comprometendo a determinação da correta vazão disponível. O presente trabalho objetiva determinar a equação regionalizada Q90 que melhor se ajuste ao comportamento hidrológico das bacias do Estado de Sergipe, considerando as diferentes regiões climáticas sergipanas – Tropical Úmida, Agreste e Semiárido –, de forma a se obter uma pequena variação entre a vazão real e a vazão calculada pela regionalização. Na determinação da vazão de permanência Q90, foi aplicado o Método Tradicional de regionalização, tendo como variáveis independentes a área de drenagem do posto fluviométrico e a sua precipitação média acumulada.
ResumoEste trabalho buscou fornecer embasamento a estudos de disponibilidade hídrica para a bacia hidrográfica do Arroio Belo, localizado no município de Caxias do Sul/RS. Para tanto, objetivou-se analisar a aplicação das funções de distribuição de probabilidade teórica Weibull, Normal, Log-Normal, Gumbel (mínimos), Log-Pearson e Pearson a dados de vazões mínimas de sete dias consecutivos. A análise teve dois enfoques: aplicação em dados anuais e, em seguida em dados mensais, considerando a sazonalidade. Para verificar a aderência das probabilidades estimadas às frequências observadas, aplicaram-se três testes: Kolmogorov-Smirnov, Anderson-Darling e Qui-Quadrado. Os resultados obtidos comprovam que a distribuição Log-Pearson III demonstra maior precisão na representação dos dados anuais da série histórica e alcança o melhor ajuste do valor da vazão mínima. Por outro lado, a análise em dados mensais, indicou a utilização da distribuição Pearson III, a qual apresentou maior adequabilidade aos dados de vazão mínima. Palavras-chaveGerenciamento de recursos hídricos; vazão mínima de referencia; função de distribuição de probabilidades. COMPARISON OF PROBABILITY DISTRIBUTION FUNCTION IN DETERMINING MINIMUM ANNUAL AND MONTHLY STREAMFLOW AbstractIn this study it was aimed to provide the foundation studies of water availability in the Arroio Belo basin, in Caxias do Sul/RS. Therefore, this study aimed to analyze the application of Weibull, Normal, LogNormal, Gumbel (minimum), LogPearson and Pearson theoretical probability functions to data of minimum streamflows for seven consecutive days of the basin. The analysis had two approaches: application in annual data, and then on monthly data, considering seasonality. To verify the adherence to the estimated probabilities of observed frequencies, we applied three tests: Kolmogorov-Smirnov, Anderson-Darling and Chi-Squared. The results show that the LogPearson III distribution shows greater accuracy in representing the annual data of the series and reach the best fit of the minimum streamflow. The monthly data analysis indicated the use of the distribution Pearson III, which showed higher suitability to the minimum streamflow data.
The reduction and resolution of conflicts involving the use of water, as well as the guarantee of compliance with its various uses, require the appropriate management of water resources, using the instruments foreseen in the pertinent legislation. Among the legal instruments used for the distribution of water, among the different uses and users, the granting of right of use stands out, which is provided as a function of demand and water availability in the requested water body. For the establishment of water availability in a river basin it is necessary to quantify the flows, which is done from the data collected in the fluviométricas stations. However, the Brazilian hydrometric network does not fully cover all hydrography, leaving parts of it without the necessary data for the estimation of flows. The regionalization of flows has been carried out with the objective of providing hydrological information in places with no data or with little information available, as long as they share similar characteristics. The hydrographic basin of the Japaratuba River, which is the object of the study, although it has the most complete hydrological monitoring network in the State of Sergipe, is characterized by great climatic variability (Tropical Humid, Agreste and Semi-Arid), resulting in a different hydrological behavior throughout this basin. Thus, the objective of this work is to determine the regionalization equations of the Q90 residence flow for this basin, which best fit its climatic hydro behavior, in order to obtain a small variation between the actual and the calculated regionalization flow. In the determination of the Q90 permanence flow, the Traditional Method of regionalization was applied, having as independent variables the drainage area of the fluviometric station and its accumulated mean precipitation. The results show that the regionalization of the permanence flow when considering the average monthly precipitation characteristics to define the homogeneous regions presented results consistent with the hydrological reality of the basin rivers and good statistical adjustments to the flows observed in the fluviometric stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.