SummaryNon-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets.
Enhanced cerebrovascular permeability and cellular infiltration mark the onset of early multiple sclerosis lesions. So far, the precise sequence of these events and their role in lesion formation and disease progression remain unknown. Here we provide quantitative evidence that blood-brain barrier leakage is an early event and precedes massive cellular infiltration in the development of acute experimental allergic encephalomyelitis (EAE), the animal correlate of multiple sclerosis. Cerebrovascular leakage and monocytes infiltrates were separately monitored by quantitative in vivo MRI during the course of the disease. Magnetic resonance enhancement of the contrast agent gadolinium diethylenetriaminepentaacetate (Gd-DTPA), reflecting vascular leakage, occurred concomitantly with the onset of neurological signs and was already at a maximal level at this stage of the disease. Immunohistochemical analysis also confirmed the presence of the serum-derived proteins such as fibrinogen around the brain vessels early in the disease, whereas no cellular infiltrates could be detected. MRI further demonstrated that Gd-DTPA leakage clearly preceded monocyte infiltration as imaged by the contrast agent based on ultra small particles of iron oxide (USPIO), which was maximal only during full-blown EAE. Ultrastructural and immunohistochemical investigation revealed that USPIOs were present in newly infiltrated macrophages within the inflammatory lesions. To validate the use of USPIOs as a non-invasive tool to evaluate therapeutic strategies, EAE animals were treated with the immunomodulator 3-hydroxy-3-methylglutaryl Coenzyme A reductase inhibitor, lovastatin, which ameliorated clinical scores. MRI showed that the USPIO load in the brain was significantly diminished in lovastatin-treated animals. Data indicate that cerebrovascular leakage and monocytic trafficking into the brain are two distinct processes in the development of inflammatory lesions during multiple sclerosis, which can be monitored on-line with MRI using USPIOs and Gd-DTPA as contrast agents. These studies also implicate that USPIOs are a valuable tool to visualize monocyte infiltration in vivo and quantitatively assess the efficacy of new therapeutics like lovastatin.
Herein, we provide the first evidence that human CNS stem cells ameliorate EAE in nonhuman primates without overt side effects. Immune regulation (rather than neural differentiation) is suggested as the major putative mechanism by which NPCs ameliorate EAE in vivo. Our findings represent a critical step toward the clinical use of human NPCs in MS.
Background: Diffuse abnormalities in the white matter (WM), ie, the so-called diffusely abnormal WM (DAWM), as observed on magnetic resonance imaging (MRI), may contribute to the development of clinical disability in multiple sclerosis (MS). Underlying pathologic and MRI characteristics of DAWM are largely unknown.Objectives: To explore and describe the histopathologic and radiologic characteristics of DAWM in chronic MS.Design: An MRI and histopathologic postmortem correlative study. Methods:We analyzed 17 formalin-fixed hemispheric brain slices from 10 patients with chronic MS using histopathologic analysis and qualitative and quantitative MRI. A region-of-interest approach was applied to compare radiologically defined DAWM, normal-appearing WM, and focal WM lesions and to correlate quantitative MRI measures with histopathologic findings. Main Outcome Measures:The DAWM consisted of extensive axonal loss, decreased myelin density, and chronic fibrillary gliosis, all of which were substantially abnormal compared with normal-appearing WM and significantly different from focal WM lesion pathology. Increased T1-and T2-relaxation times and decreased fractional anisotropy values were found in DAWM regions of interest, in association with extensive axonal loss and reduced myelin density. Increased T1-and T2relaxation times were associated with chronic gliosis.Conclusions: This study classifies DAWM in chronic MS as an abnormality that is different from normalappearing WM and focal WM lesions, most likely resulting from the cumulative effects of ongoing inflammation and axonal pathology. As such, DAWM is likely to substantially contribute to disease progression and may prove to be an important new disease marker in clinical trials focusing on the neurodegenerative aspects of MS.
Experimental autoimmune encephalomyelitis in the neotropical primate common marmoset (Callithrix jacchus) is a relevant autoimmune animal model of multiple sclerosis. T cells specific for peptide 34 to 56 of myelin/oligodendrocyte glycoprotein (MOG34-56) have a central pathogenic role in this model. The aim of this study was to assess the requirement for innate immune stimulation for activation of this core pathogenic autoimmune mechanism. Marmoset monkeys were sensitized against synthetic MOG34-56 peptide alone or in combination with the nonencephalitogenic peptide MOG74-96 formulated in incomplete Freund adjuvant, which lacks microbial components. Experimental autoimmune encephalomyelitis development was recorded by monitoring neurological signs, brain magnetic resonance imaging, and longitudinal profiling of cellular and humoral immune parameters. All monkeys developed autoimmune inflammatory/demyelinating central nervous system disease characterized by massive brain and spinal cord demyelinating white matter lesions with activated macrophages and CD3+ T cells. Immune profiling ex vivo demonstrated the activation of mainly CD3+CD4+/8+CD56+ T cells against MOG34-56. Upon ex vivo stimulation, these T cells produced more interleukin 17A compared with TH1 cytokines (e.g. interferon-gamma) and displayed peptide-specific cytolytic activity. These results indicate that the full spectrum of marmoset experimental autoimmune encephalomyelitis can be induced by sensitization against a single MOG peptide in incomplete Freund adjuvant lacking microbial compounds for innate immune activation and by eliciting antigen-specific T-cell cytolytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.