Despite widespread efforts to implement climate services, there is almost no literature that systematically analyzes users' needs. This paper addresses this gap by applying a decision analysis perspective to identify what kind of mean sea level rise (SLR) information is needed for local coastal adaptation decisions. We first characterize these decisions, then identify suitable decision analysis approaches and the sea level information required, and finally discuss if and how these information needs can be met given the state of the art of sea level science. We find that four types of information are needed: (i) probabilistic predictions for short‐term decisions when users are uncertainty tolerant; (ii) high‐end and low‐end SLR scenarios chosen for different levels of uncertainty tolerance; (iii) upper bounds of SLR for users with a low uncertainty tolerance; and (iv) learning scenarios derived from estimating what knowledge will plausibly emerge about SLR over time. Probabilistic predictions can only be attained for the near term (i.e., 2030–2050) before SLR significantly diverges between low and high emission scenarios, for locations for which modes of climate variability are well understood and the vertical land movement contribution to local sea levels is small. Meaningful SLR upper bounds cannot be defined unambiguously from a physical perspective. Low‐ to high‐end scenarios for different levels of uncertainty tolerance and learning scenarios can be produced, but this involves both expert and user judgments. The decision analysis procedure elaborated here can be applied to other types of climate information that are required for mitigation and adaptation purposes.
Uncertainties in Representative Concentration Pathway (RCP) scenarios and Antarctic Ice Sheet (AIS) melt propagate into uncertainties in projected mean sea-level (MSL) changes and extreme sea-level (ESL) events. Here we quantify the impact of RCP scenarios and AIS contributions on 21st-century ESL changes at tide-gauge sites across the globe using extreme-value statistics. We find that even under RCP2.6, almost half of the sites could be exposed annually to a present-day 100-year ESL event by 2050. Most tropical sites face large increases in ESL events earlier and for scenarios with smaller MSL changes than extratropical sites. Strong emission reductions lower the probability of large ESL changes but due to AIS uncertainties, cannot fully eliminate the probability that large increases in frequencies of ESL events will occur. Under RCP8.5 and rapid AIS mass loss, many tropical sites, including lowlying islands face a MSL rise by 2100 that exceeds the present-day 100-year event level.
A B S T R A C TThe North Atlantic thermohaline circulation (THC) carries heat and salt towards the Arctic. This circulation is partly sustained by buoyancy loss and is generally believed to be inhibited by northern freshwater input as indicated by the 'box-model ' of Stommel (1961). The inferred freshwater-sensitivity of the THC, however, varies considerably between studies, both quantitatively and qualitatively. The northernmost branch of the Atlantic THC, which forms a double estuarine circulation in the Arctic Mediterranean, is one example where both buoyancy loss and buoyancy gain facilitate circulation. We have built on Stommel's original concept to examine the freshwater-sensitivity of a double estuarine circulation. The net inflow into the double estuary is found to be more sensitive to a change in the distribution of freshwater than to a change in the total freshwater input. A double estuarine circulation is more stable than a single overturning, requiring a larger amount and more localised freshwater input into regions of buoyancy loss to induce a thermohaline 'collapse'. For the Arctic Mediterranean, these findings imply that the Atlantic inflow may be relatively insensitive to increased freshwater input. Complementing Stommel's thermal and haline flow regimes, the double estuarine circulation allows for a third: the throughflow regime. In this regime, a THC with warm poleward surface flow can be sustained without production of dense water; a decrease in high-latitude dense water formation does therefore not necessarily affect regional surface conditions as strongly as generally thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.