Driven by constantly increasing energy demands, prices, environmental impact caused by carbon dioxide emissions and global warming, efficient use of energy is gaining grounds in both public and private enterprises. The energy consumption of belt conveyors can be lowered using energy modelling techniques. In this research,
a resistance-based mathematical energy model was utilised in
the electrical energy efficiency optimisation of the troughed, inclined belt conveyor system taking into account indentation rolling resistance, bulk solid flexure resistance and secondary resistance as they together contribute 89% resistance to motion. An optimisation problem was formulated to optimise the electrical energy efficiency of the belt conveyor system and subsequently solved using
the “fmincon” solver and interior point algorithm of the MATLAB optimisation toolbox. Analysis of simulation results showed that for the same given operating capacities, an average energy saving of about 7.42% and an annual total cost savings of Gh¢ 5, 852, 669.00 (USD 1, 083, 827.59) for a 2592-hour operation can be achieved when the used model and optimisation technique are employed over the constant speed operation.
Interconnecting power transmission systems provide reliability of electric power supply. The security of the system is however questioned when a disturbance in any part of the interconnected system causes instability in the entire network. Unified Power Flow Controller (UPFC), which is a member of the flexible alternating current transmission system (FACTS) family, has the capability of controlling active and reactive power flow in a transmission line thereby improving the voltage stability of the system especially at the 500 kV configuration level. The performance of a 161-kV UPFC modelled in SimPowerSystems is tested on Ghana's power transmission network. The optimal placement of the UPFC is done using fast voltage stability index (FVSI) and maximum loadability assessment (MLA). The results show that the device improved the connecting bus voltage from 0.88 p.u. to 0.98 p.u. Active power loss in the network was also reduced from 13.40 MW to 10.39 MW when the UPFC was in circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.