Miyoshi myopathy (MM) is an adult onset, recessive inherited distal muscular dystrophy that we have mapped to human chromosome 2p13. We recently constructed a 3-Mb P1-derived artificial chromosome (PAC) contig spanning the MM candidate region. This clarified the order of genetic markers across the MM locus, provided five new polymorphic markers within it and narrowed the locus to approximately 2 Mb. Five skeletal muscle expressed sequence tags (ESTs) map in this region. We report that one of these is located in a novel, full-length 6.9-kb muscle cDNA, and we designate the corresponding protein 'dysferlin'. We describe nine mutations in the dysferlin gene in nine families; five are predicted to prevent dysferlin expression. Identical mutations in the dysferlin gene can produce more than one myopathy phenotype (MM, limb girdle dystrophy, distal myopathy with anterior tibial onset).
Leprosy is caused by Mycobacterium leprae and affects about 700,000 individuals each year. It has long been thought that leprosy has a strong genetic component, and recently we mapped a leprosy susceptibility locus to chromosome 6 region q25-q26 (ref. 3). Here we investigate this region further by using a systematic association scan of the chromosomal interval most likely to harbour this leprosy susceptibility locus. In 197 Vietnamese families we found a significant association between leprosy and 17 markers located in a block of approx. 80 kilobases overlapping the 5' regulatory region shared by the Parkinson's disease gene PARK2 and the co-regulated gene PACRG. Possession of as few as two of the 17 risk alleles was highly predictive of leprosy. This was confirmed in a sample of 975 unrelated leprosy cases and controls from Brazil in whom the same alleles were strongly associated with leprosy. Variants in the regulatory region shared by PARK2 and PACRG therefore act as common risk factors for leprosy.
Mycobacterium tuberculosis is a leading cause of mortality worldwide and establishes a long-lived latent infection in a substantial proportion of the human population. Multiple lines of evidence suggest that some individuals are resistant to latent M. tuberculosis infection despite long-term and intense exposure, and we term these individuals 'resisters'. In this Review, we discuss the epidemiological and genetic data that support the existence of resisters and propose criteria to optimally define and characterize the resister phenotype. We review recent insights into the immune mechanisms of M. tuberculosis clearance, including responses mediated by macrophages, T cells and B cells. Understanding the cellular mechanisms that underlie resistance to M. tuberculosis infection may reveal immune correlates of protection that could be utilized for improved diagnostics, vaccine development and novel host-directed therapeutic strategies.
Conversely, a lysine-to-arginine substitution outside the core consensus sequence had no effect on the activity of mdrl. Failure to reduce intracellular accumulation of [3Hlvinblastine paralleled the loss of activity in cell clones expressing mutant MDR1 proteins. However, the ability to bind the photoactivatable ATP analog 8-azido ATP was retained in the five inactive MDR1 mutants. This result implies that an essential step subsequent to ATP binding is impaired in these mutants, possibly ATP hydrolysis or secondary conformational changes induced by ATP-binding or hydrolysis. Our results suggest that the two NBS function in a cooperative fashion, since mutations in a single NBS completely abrogated the biological activity of mdrl.
Genome scans for asthma have identified suggestive or significant linkages on 17 different chromosomes, including chromosome 12, region q13-23, housing the vitamin D receptor (VDR) gene. Through interaction with VDR, 1,25-dihydroxyvitamin D3 mediates numerous biological activities, such as regulation of helper T-cell development and subsequent cytokine secretion profiles. Variants of the VDR have been found to be associated with immune-mediated diseases that are characterized by an imbalance in helper T-cell development, such as Crohn's disease and tuberculosis. The VDR, hence, is a good candidate to be investigated for association with asthma, which is characterized by enhanced helper T-cell type 2 activity. Here, we examined VDR genetic variants in an asthma family-based cohort from Quebec. We report six variants to be strongly associated with asthma and four with atopy (0.0005 < or = p < or = 0.05). Analysis of the linkage disequilibrium pattern and haplotypes also revealed significant association with both phenotypes (0.0004 < or = p < or = 0.01). The findings have been replicated by another research team in a second but not in a third cohort. These results identify VDR variants as genetic risk factors for asthma/atopy and implicate a non-human leukocyte antigen immunoregulatory molecule in the pathogenesis of asthma and atopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.