Thrombolite and stromatolite reefs occur at several stratigraphic levels within the terminal Proterozoic Nama Group (c. 550–543 Ma) of central and southern Namibia. The reefs form integral parts of several carbonate platforms within the Nama Group, including the Kuibis platform of the northern Nama Basin (Zaris subbasin), and Huns platform (Witputs subbasin) of the southern Nama Basin. The reefs are composed of both thrombolites and stromatolites that form laterally continuous biostromes, isolated patch reefs, and isolated pinnacle reefs ranging in scale from a metre to several kilometres in width. In the majority of cases, the reefs occur stratigraphically as an integral facies within the transgressive systems tracts of sequences making up the Kuibis and Huns platforms. This suggests that a regime of increasing accommodation was required to form well-developed reefs, though reefs also occur sporadically in highstand systems tract settings. Within a given transgressive systems tract, a regime of increasing accommodation through time favours the transition from sheet-like biostromal geometries to more isolated patch and pinnacle biohermal geometries. Similarly, increasing accommodation in space, such as a transect down depositional dip, shows a similar transition from more sheet-like geometries in updip positions to more isolated geometries in downdip positions. Reefal facies consist of thrombolitic domes, columns and mounds with well-developed internal clotted textures, in addition to stromatolitic domes, columns and mounds, with crudely to moderately well-developed internal lamination. Stromatolites are better developed in conditions of relatively low accommodation, and updip locations, under conditions of higher current velocities and greater sediment influx. Thrombolites are better developed in conditions of relatively high accommodation and low sediment influx. Both types of microbialites are intimately associated with the first calcifying metazoan organisms, which may have attached themselves to the sediment surface or otherwise lived within sheltered depressions within the rough topography created by ecologically complex mats. The appearance of thrombolitic textures during terminal Proterozoic time is consistent with colonization of cyanobacterial mats by higher algae and metazoans, which would have been an important process in generating clotted textures. Fabrics in the Nama thrombolites are well preserved and show evidence of thrombolitic mesoclots being overgrown by fibrous marine carbonate, interpreted as former aragonite. This was followed by emplacement of geopetal micrite fills, and precipitation of dolomite as an isopachous rim cement, followed by occlusion of remaining porosity by blocky calcite spar.
is a graduate student in geophysics at MIT. He studies the effects of large impacts on planetary evolution and is a member of the Mars Exploration Rover Athena Science Team. He also works on problems relating to the morphometry and morphogenesis of stromatolites and early skeletogenous metazoa.The stratigraphic architecture of a terminal Proterozoic carbonate ramp system (ca. 550 Ma, Nama Group, Namibia) was mapped quantitatively with digital surveying technologies. The carbonate ramp consists of a shoaling-upward ramp sequence in which thrombolite-stromatolite reefs developed at several stratigraphic levels. The reefs are associated with grainstone and heterolithic facies and exhibit diverse geometries and dimensions related to the position in the sequence-stratigraphic framework. Laterally extensive reefs with a tabular geometry developed when accommodation was relatively low, whereas discontinuous oblate dome-shaped reefs developed during times when accommodation space was relatively high. Collecting sedimentological and stratigraphic data digitally in an extensive canyon system allowed a comprehensive documentation of the three-dimensional (3-D) architecture and dimensions of the reefal buildups. Both deterministic and stochastic methods were used to extend outcrop observations to construct 3-D models that honor the observed stratigraphy. In particular, the accuracy with which dimensions of reefal buildups can be measured is critically important in the statistical modeling of the dome-shaped buildups. Calculations and corrections can be applied directly to the digital data set and serve as input during model building. The final 3-D model faithfully reproduces the outcrop distribution of facies and geological objects and has a high spatial resolution, compared GEOHORIZONS with petroleum industry reservoir models. The organization of the reefal buildups in the stratigraphic framework has direct implications for reservoir continuity and connectivity in analogous settings. The digital characterization and 3-D outcrop models presented in this article can be subsequently used to condition dynamic reservoir-simulation modeling of geologically similar areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.