An adaptive low-illumination image enhancement algorithm based on the weighted least squares optimization is proposed to solve the difficulty of detailed feature recognition in low-illumination images that collected by visible light imaging equipment. First, the image is converted from RGB channel to LAB channel. Second, we use an edge-preserving smoothing operator based on the weighted least squares optimization to coarsen smooth base layer and extract multi-scale details in brightness channel. Then, an adaptive weight is proposed and applied to the weighted fusion of smooth base and detail features. Finally, the Retinex enhancement is performed to obtain a ultimate enhanced image. Experiments result show that the image enhanced by this method has suitable visual brightness and clear details. In terms of objective indicators, it has good and stable performance in NIQE, TMQI, and information entropy.
Estimating position and stereographic geometry information of noncooperative spacecraft through three-dimensional (3-D) reconstruction techniques is of great significance. Depth information acquisition is an important component of 3-D reconstruction. Monocular cameras are cheaper and more widely used than depth sensors. The relative positions of noncooperative spacecraft and our spacecraft can be calculated from depth maps of monocular depth estimation and the camera parameters, providing data support for subsequent tracking and capture missions. This paper proposes a monocular depth estimation network combining the convolutional neural network (CNN) and a vision transformer (VIT) to improve the prediction accuracy of few-shot samples. We extract detail features and global features from the CNN and VIT encoders, respectively, and then fuse deep features and shallow features by a skip-connected upsampling decoder. Compared with the representative depth estimation algorithms in recent years on the NYU-Depth V2 dataset, the proposed network structure combines the advantages of the CNN and VIT as well as estimates the global depth of the scene more accurately while maintaining details. To solve the lack of spacecraft data collection, a new dataset is made from 3-D simulation models. Experiments on the self-made dataset demonstrate the feasibility of this method in aerospace engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.