It is believed that senescent cells contribute to the progression of primary and metastatic tumors, however, the exact mechanisms of this activity remain elusive. In this report we show that senescent human peritoneal mesothelial cells (HPMCs) alter the secretory profile of ovarian cancer cells (A2780, OVCAR-3, SKOV-3) by increasing the release of four angiogenic agents: CXCL1, CXCL8, HGF, and VEGF. Proliferation and migration of endothelial cells subjected to conditioned medium generated by: cancer cells modified by senescent HPMCs; cancer cells co-cultured with senescent HPMCs; and by early-passage HPMCs from aged donors, were markedly intensified. The same was the case for the vascularization, size and number of tumors that developed in the mouse peritoneum upon injection of ovarian cancer cells with senescent HPMCs. When the identified pro-angiogenic proteins were neutralized in conditioned medium from the cancer cells, both aspects of endothelial cell behavior intensified in vitro in response to senescent HPMCs were markedly reduced. The search for mediators of senescent HPMC activity using specific neutralizing antibodies and recombinant exogenous proteins showed that the intensified angiogenic potential of cancer cells was elicited by IL-6 and TGF-β1. At the transcriptional level, increased proliferation and migration of endothelial cells exposed to cancer cells modified by senescent HPMCs was regulated by HIF-1α, NF-κB/p50 and AP-1/c-Jun. Collectively, our findings indicate that senescent HPMCs may promote the progression of ovarian cancer cells by reprogramming their secretory phenotype towards increased production of pro-angiogenic agents and subsequent increase in the angiogenic capabilities of the vascular endothelium.
Senescence-associated β-galactosidase (SA-β-Gal) is a widely used marker of senescent cells in vitro and in vivo. In this report, young and senescent human peritoneal mesothelial cells (HPMCs) and fragments of the omentum, from which these cells were isolated, were subjected to simultaneous examination of SA-β-Gal using two methods, i.e. cytochemical and fluorescent methods. The results obtained were confronted with the cumulative number of population doublings (CPD) and the calendar age of the tissue donor. The study showed that senescence of HPMCs proceeds with either an increased percentage of SA-β-Gal-positive cells or increased enzyme activity. Cytochemical SA-β-Gal staining in early-passage cultures negatively correlated with CPD values but not with donor age in both cell cultures and omentum specimens. Conversely, SA-β-Gal activity measured with the fluorescence method rose in proportion to the calendar age of the donor either in early-passage cultures or in primary cell isolates from omental tissue. At the same time it was not related to the CPD values. These findings may suggest that with respect to at least peritoneal mesothelial cells, the cytochemical and fluorescent methods of SA-β-Gal detection, though complementary, are informative for different levels of aging, i.e. the cytochemical approach for senescence in vitro and the fluorescence-based technique for organismal aging in vivo.
Although malignant ascites (MAs) are known to contribute to various aspects of ovarian cancer progression, knowledge regarding their role in the adhesion of cancer cells to normal peritoneal cells is incomplete. Here, we compared the effect of MAs and benign ascites (BAs) on the adhesion of A2780 and OVCAR-3 cancer cells to omentum-derived peritoneal mesothelial cells (PMCs) and peritoneal fibroblasts (PFBs). The results showed that MAs stimulated the adhesion of A2780 and OVCAR-3 cells to PMCs and PFBs more efficiently than did BAs, and the strongest binding occurred when both cancer and normal cells were exposed to the fluid. Intervention studies showed that MAs-driven adhesion of A2780 cells to PMCs/PFBs depends on the presence of TGF-β1 and HGF, whereas binding of OVCAR-3 cells was mediated by TGF-β1, GRO-1, and IGF-1. Moreover, MAs upregulated α5β1 integrin expression on PFBs but not on PMCs or cancer cells, vimentin expression in all cells tested, and ICAM-1 only in cancer cells. When integrin-linked kinase was neutralized in PMCs or PFBs, cancer cell adhesion to PMCs and PFBs decreased. Collectively, our report shows that MAs may contribute to the early stages of ovarian cancer metastasis by modulating the proadhesive interplay between normal and cancer cells.
The role of the epithelial-mesenchymal transition (EMT) in ovarian cancer cell progression is unquestioned. In this report, we describe that malignant ascites, fluid that accumulates in the peritoneal cavity in a large group of patients with ovarian cancer, stimulate EMT in two representative ovarian cancer cell lines (A2780, SKOV-3). In addition, we identify the ascites-derived mediators of EMT and signaling pathways initiated in the cancer cells that underlie this phenomenon. Finally, we demonstrate that EMT induced in the cancer cells in response to the malignant ascites contributes to their increased transmesothelial invasion. Altogether, our study provides new insight into the mechanistic aspects of the malignant ascites-dependent exacerbation of the intraperitoneal progression of ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.