We investigate the bifurcation structure of the Kuramoto-Sivashinsky equation with homogeneous Dirichlet boundary conditions. Using hidden symmetry principles, based on an extended problem with periodic boundary conditions and O(2) symmetry, we show that the zero solution exhibits two kinds of pitchfork bifurcations: one that breaks the reflection symmetry of the system with Dirichlet boundary conditions and one that breaks a shift-reflect symmetry of the extended system. Using Lyapunov-Schmidt reduction, we show both to be supercritical. We extend the primary branches by means of numerical continuation, and show that they lose stability in pitchfork, transcritical or Hopf bifurcations. Tracking the corresponding secondary branches reveals an interval of the viscosity parameter in which up to four stable equilibria and time-periodic solutions coexist. Since the study of the extended problem is indispensible for the explanation of the bifurcation structure, the Kuramoto-Sivashinsky problem with Dirichlet boundary conditions provides an elegant manifestation of hidden symmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.