The prediction of responses of the reinforced concrete shear walls subject to strong ground motions is critical in designing, assessing, and deciding the recovery strategies. This study evaluates the ability of regression models and a hybrid technique (ANN-SA model), the Artificial Neural Network (ANN), and Simulated Annealing (SA), to predict responses of the reinforced concrete shear walls subject to strong ground motions. To this end, four buildings (15, 20, 25, and 30-story) with concrete shear walls were analyzed in OpenSees.150 seismic records are used to generate a comprehensive database of input (characteristics of records) and output (responses). The maximum acceleration, maximum velocity, and earthquake characteristics are used as predictors. Different machine learning models are used, and the accuracy of the models in identifying the responses of the shear walls is compared. The sensitivity of input variables to the seismic demand model is investigated. It has been seen from the results that the ANN-SA model has reasonable accuracy in the prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.