This research developed an assessment tool for enhancing the healing environment in healthcare buildings, especially interior finishing materials, based on sustainability standards, i.e., Leadership in Energy and Environmental Design (LEED) standards and WELL building standards. The purpose of this tool is to help decision-makers, interior designers, and client committees to identify the compatible interior materials’ specifications with the healing and non-infection environment in order to create a better experience for patient, staff, and visitors. The current study adopts a sustainability-oriented approach to bring more objectivity for assessing the architectural finish in the healing environment at the healthcare projects through a case study of King Faisal University’s (KFU) hospital project with a 182,000 m2 built area. Following the consensus of different experts, the assessment tool integrated two main international standards: LEED healthcare and WELL building standards, in addition to chromotherapy method. This tool assesses interior finishing materials, which affect the healing environment and sustainability in healthcare buildings. Each standard has credits, including items and scores for each item. The developed assessment tool was adopted in the KFU Hospital project, which has gained high acceptance among all stakeholders, including decision-makers. The developed tool is an integrated instrument (based on LEED standards, WELL standards, and chromotherapy method) for assessment; instead of using different tools for assessing finishing materials in healthcare buildings, the assessment tool supports all stakeholders in analyzing interior finishing material to achieve the optimum healing environment and sustainability.
Optimizing a net-zero energy (NZE) residential building using what renewable energy resources are available in desert environments and budgeted within the limits of a governmental construction project is proving to be increasingly challenging for many countries, including the Kingdom of Saudi Arabia (KSA). Buildings in such regions encounter significantly high annual energy consumption rates, especially in the cooling capacity across a project’s life cycle, which in turn impacts the investment value. Therefore, this study presents a heuristic approach that aimed to examine the feasibility of NZE residential buildings in the KSA using an arid campus case study within the period of 2021–2022 based on the dual renewable energy sources of a geothermal heat pump (GHP), which served as a cooling system, and photovoltaic thermal collectors (PVT) serving as a power generation system. This study adopted a numerical technical assessment in the case study, using HAP software to analyze heating/cooling systems, and PVsyst V7.1.0 software for the variable simulation of solar photovoltaic power systems. This heuristic approach, through two assessment stages, achieved significant outcomes for a sustainable bottom-line, and provide a practical approach for achieving an NZE residential building in the King Faisal University (KFU) case study, as well as a reduction in energy consumption as well as the maintenance cost, which has a positive consequence on the payback period. Our study’s results have implications for both sustainable and green buildings with similar characteristics to those we investigated, and our results could be used to develop installation guidelines for renewable energy systems. Furthermore, our results can provide decision makers with a basis for retrofitting existing buildings to enhance their energy efficiency, increase investment value, as well as prevent the indiscriminate installation of renewable energy sources to merely increase the renewable energy installation rate.
The integration of sustainability rating systems in healthcare projects and healthcare building envelope specifications is a growing concern in the construction industry, especially in the arid region. The external facade of healthcare buildings is one of the most significant contributors to the energy cost and comfort level of healthcare buildings in such a region. This study undertook a comprehensive comparison analysis of an adaptive model of high-performance glazing (HPG) specifications for patient rooms in a case study inside Saudi Arabia based on multi-criteria, including the LEED Healthcare rating system. The study used a technical comparative analysis for three onsite glazing models with HAB software v6.0 based on specifications of specialist manufacturer organizations for glazing window performance, climatic conditions, and the region’s culture. Significant results in the case study project were achieved in energy saving and sustainability ranking in the healthcare rating system, providing new specification guidelines for HPG applications in healthcare buildings located in an arid region, and cultural environment considerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.