The antioxidant nordihydroguaiaretic acid (NDGA) has recently become well known as a putative anticancer drug. In this paper, it was evaluated the in vitro peroxynitrite (ONOO(-)), singlet oxygen ((1)O(2)), hydroxyl radical (OH(v)), hydrogen peroxide (H(2)O(2)), superoxide anion and hypochlorous acid (HOCl) scavenging capacity of NDGA. It was found that NDGA scavenges: (a) ONOO(-) (IC(50) = 4 +/- 0.94 microM) as efficiently as uric acid; (b) (1)O(2) (IC(50) = 151 +/- 20 microM) more efficiently than dimethyl thiourea, lipoic acid, N-acetyl-cysteine and glutathione; (c) OH(v) (IC(50) = 0.15 +/- 0.02 microM) more efficiently than dimethyl thiourea, uric acid, trolox, dimethyl sulfoxide and mannitol, (d) (IC(50) = 15 +/- 1 microM) more efficiently than N-acetyl-cysteine, glutathione, tempol and deferoxamine and (e) HOCl (IC(50) = 622 +/- 42 microM) as efficiently as lipoic acid and N-acetyl-cysteine. NDGA was unable to scavenge H(2)O(2). In an in vivo study in rats, NDGA was able to prevent ozone-induced tyrosine nitration in lungs. It is concluded that NDGA is a potent in vitro scavenger of ONOO(-), (1)O(2), OH(v), and HOCl and is able to prevent lung tyrosine nitration in vivo.
It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.