When a viscoelastic fluid, such as an aqueous polymer solution, flows through a porous medium, the fluid undergoes a repetitive expansion and contraction as it passes from one pore to the next. Above a critical flow rate, the interaction between the viscoelastic nature of the polymer and the pore configuration results in spatial and temporal flow instabilities reminiscent of turbulentlike behavior, even though the Reynolds number Re 1. To investigate whether this is caused by many repeated pore body-pore throat sequences, or simply a consequence of the converging (diverging) nature present in a single pore throat, we performed experiments using anionic hydrolyzed polyacrylamide (HPAM) in a microfluidic flow geometry representing a single pore throat. This allows the viscoelastic fluid to be characterized at increasing flow rates using microparticle image velocimetry in combination with pressure drop measurements. The key finding is that the effect, popularly known as "elastic turbulence," occurs already in a single pore throat geometry. The critical Deborah number at which the transition in rheological flow behavior from pseudoplastic (shear thinning) to dilatant (shear thickening) strongly depends on the ionic strength, the type of cation in the anionic HPAM solution, and the nature of pore configuration. The transition towards the elastic turbulence regime was found to directly correlate with an increase in normal stresses. The topology parameter, Q f , computed from the velocity distribution, suggests that the "shear thickening" regime, where much of the elastic turbulence occurs in a single pore throat, is a consequence of viscoelastic normal stresses that cause a complex flow field. This flow field consists of extensional, shear, and rotational features around the constriction, as well as upstream and downstream of the constriction. Furthermore, this elastic turbulence regime, has high-pressure fluctuations, with a power-law decay exponent of up to |−2.1| which is higher than the Kolmogorov value for turbulence of |−5/3|.
Flow of complex fluids in porous structures is pertinent in many biological and industrial processes. For these applications, elastic turbulence, a viscoelastic instability occurring at low Re—arising from a non-trivial coupling of fluid rheology and flow geometry—is a common and relevant effect because of significant over-proportional increase in pressure drop and spatio-temporal distortion of the flow field. Therefore, significant efforts have been made to predict the onset of elastic turbulence in flow geometries with constrictions. The onset of flow perturbations to fluid streamlines is not adequately captured by Deborah and Weissenberg numbers. The introduction of more complex dimensionless numbers such as the M-criterion, which was meant as a simple and pragmatic method to predict the onset of elastic instabilities as an order-of-magnitude estimate, has been successful for simpler geometries. However, for more complex geometries which are encountered in many relevant applications, sometimes discrepancies between experimental observation and M-criteria prediction have been encountered. So far these discrepancies have been mainly attributed to the emergence from disorder. In this experimental study, we employ a single channel with multiple constrictions at varying distance and aspect ratios. We show that adjacent constrictions can interact via non-laminar flow field instabilities caused by a combination of individual geometry and viscoelastic rheology depending (besides other factors) explicitly on the distance between adjacent constrictions. This provides intuitive insight on a more conceptual level why the M-criteria predictions are not more precise. Our findings suggest that coupling of rheological effects and fluid geometry is more complex and implicit and controlled by more length scales than are currently employed. For translating bulk fluid, rheology determined by classical rheometry into the effective behaviour in complex porous geometries requires consideration of more than only one repeat element. Our findings open the path towards more accurate prediction of the onset of elastic turbulence, which many applications will benefit. Article Highlights We demonstrate that adjacent constrictions “interact” via the non-laminar flow fields caused by individual constrictions, implying that the coupling of rheological effects and fluid geometry is more complex and implicit. The concept of characterizing fluid rheology independent of flow geometry and later coupling back to the geometry of interest via dimensionless numbers may fall short of relevant length scales, such as the separation of constrictions which control the overlap of flow fields. By providing direct experimental evidence illustrating the cause of the shortcoming of the status-quo, the expected impact of this work is to challenge and augment existing concepts that will ultimately lead to the correct prediction of the onset of elastic turbulence.
The Flory-Huggins model interaction explained the compatibility and extent of polymer dissolution in selected solvent mixtures via Hansen Solubility Parameters (HSP). Metastable zone where nucleation of NPs would start was determined by the solvent mixture – polymer – water interaction. Simulation results explained that the combination of acetone-chloroform (0.20:0.80) was better than acetone-ethyl lactate (0.40:0.60) for PCL solvation while ethyl lactate-dimethyl sulfoxide (0.60:0.40) was better for PLA solvation as compared to ethyl lactate-acetone (0.80:0.20). Nanoprecipitation with aqueous to organic volume ratio of 10 was used to prepare the biodegradable PCL nanoparticles for experimental validation. The organic phase was 1 g L−1 PCL in solvents or solvent mixtures and the antisolvent was deionized (DI) water. Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) were used to examine the morphology and size of nanoparticles formed. Results showed that the acetone-chloroform with volume fraction of 0.20 to 0.80 was the best solvent mixture for PCL in producing NPs with the mean size less than 100 nm. Solvent mixture proved by numerical simulation and experimental validation, able to enhance the affinity of polymer (PCL or PLA) for water to produce nanoparticles with much smaller size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.