Objectives: The aim of this research was to examine whether high-frequency whole-body vibration activates the tonic vibration reflex (TVR). Patients and methods: The experimental study was conducted with seven volunteers (mean age: 30.8±3.3 years; range, 26 to 35 years) between December 2021 and January 2022. To elicit soleus TVR, high-frequency (100-150 Hz) vibration was applied to the Achilles tendon. High-frequency (100-150 Hz) whole-body vibration and low-frequency (30-40 Hz) whole-body vibration were applied in quiet standing. Whole-body vibration-induced reflexes were recorded from the soleus muscle using surface electromyography. The cumulative average method was used to determine the reflex latencies. Results: Soleus TVR latency was 35.6±5.9 msec, the latency of the reflex activated by high-frequency whole-body vibration was 34.8±6.2 msec, and the latency of the reflex activated by low-frequency whole-body vibration was 42.8±3.4 msec (F(2, 12)=40.07, p=0.0001, ƞ2 =0.87). The low-frequency whole-body vibration-induced reflex latency was significantly longer than high-frequency whole-body vibration-induced reflex latency and TVR latency (p=0.002 and p=0.001, respectively). High-frequency whole-body vibration-induced reflex latency and TVR latency were found to be similar (p=0.526). Conclusion: This study showed that high-frequency whole-body vibration activates TVR.
[Purpose] The beneficial neuromuscular effects of whole-body vibration are explained by the tonic vibration or bone myoregulation reflex. Depending on factors that remain undefined, whole-body vibration may activate the tonic vibration or bone myoregulation reflex. We aimed to examine whether voluntary contraction facilitates activation of the tonic vibration reflex during whole-body vibration. [Participants and Methods] Eleven volunteers were included in this study. Local and whole-body vibrations were applied in a quiet standing (without voluntary contraction) and a semi-squatting (isometric soleus contraction) position. Local vibration was applied to the Achilles tendon. Surface electromyography was obtained from the soleus muscle. The cumulative average method was used to determine soleus reflex latency. [Results] In the quiet standing position, the bone myoregulation reflex latency was 39.9 ± 4.1 milliseconds and the tonic vibration reflex latency was 35.4 ± 3.6 milliseconds. Whole-body vibration application in the semi-squatting position activated the tonic vibration reflex in four participants and the bone myoregulation reflex in seven participants. Local vibration activated the tonic vibration reflex in both positions for all participants. [Conclusion] Simultaneous whole-body vibration application and voluntary contraction may activate the tonic vibration reflex. Determining the spinal mechanisms underlying the whole-body vibration exercises will enable their effective and efficient use in rehabilitation and sports.
Objective:The purpose of this study is to investigate the utility of systemic immune inflammation index as a predictor of disease severity in patients with knee osteoarthritis. Methods: 200 patients diagnosed with knee osteoarthritis according to ACR knee osteoarthritis diagnostic criteria were included in the study. Kellgren-Lawrence staging of knee osteoarthritis, Western Ontario and McMaster University Osteoarthritis (WOMAC) index score and systemic immune-inflammation index score were calculated among all participants Results: There were 152 (%76) female and 48 (%24) male participants and median score of age was 63 (54,25-70). 14 (7%) grade 1 gonarthrosis, 64 (32%) grade 2, 72 (36%) grade 3 and 50 (25%) grade 4 gonarthrosis patients were detected. There was no significant correlation between the systemic immune-inflammation index and the radiological stage of gonarthrosis (Kellgren Lawrens Score) (p=0.238). No statistically significant correlation was found between the systemic immune-inflammation index and WOMAC scores (p=0.593). Conclusion: The systemic immune-inflammation index was not found to be correlated with disease severity in knee OA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.