This study aims to investigate the effect of culturing conditions (static and flow perfusion) on the proliferation and osteogenic differentiation of rat bone marrow stromal cells seeded on two novel scaffolds exhibiting distinct porous structures. Specifically, scaffolds based on SEVA-C (a blend of starch with ethylene vinyl alcohol) and SPCL (a blend of starch with polycaprolactone) were examined in static and flow perfusion culture. SEVA-C scaffolds were formed using an extrusion process, whereas SPCL scaffolds were obtained by a fiber bonding process. For this purpose, these scaffolds were seeded with marrow stromal cells harvested from femoras and tibias of Wistar rats and cultured in a flow perfusion bioreactor and in 6-well plates for 3, 7, and 15 days. The proliferation and alkaline phosphatase activity patterns were similar for both types of scaffolds and for both culture conditions. However, calcium content analysis revealed a significant enhancement of calcium deposition on both scaffold types cultured under flow perfusion. This observation was confirmed by Von Kossa-stained sections and tetracycline fluorescence. Histological analysis and confocal images of the cultured scaffolds showed a much better distribution of cells within the SPCL scaffolds than the SEVA-C scaffolds, which had limited pore interconnectivity, under flow perfusion conditions. In the scaffolds cultured under static conditions, only a surface layer of cells was observed. These results suggest that flow perfusion culture enhances the osteogenic differentiation of marrow stromal cells and improves their distribution in three-dimensional, starch-based scaffolds. They also indicate that scaffold architecture and especially pore interconnectivity affect the homogeneity of the formed tissue.
This study describes a synthesis method of biodegradable macroporous hydrogels suitable as in situ cross-linkable biomaterials. Macroporous hydrogels were based on poly(propylene fumarate-co-ethylene glycol) and prepared via coupled free radical and pore formation reactions. Cross-linking was initiated by a pair of redox initiators, ammonium persulfate and L-ascorbic acid. Pores were formed by the reaction between L-ascorbic acid and sodium bicarbonate, a basic component, which evolved carbon dioxide. Sol fraction of the hydrogels was varied from 0.06 +/- 0.01 to 0.64 +/- 0.01. A stereological approach was used to analyze the morphological properties of the macroporous hydrogels by relating the morphological properties of thin sections to the original three-dimensional macroporous hydrogel. Prepared macroporous hydrogels had porosities between 0.43 +/- 0.08 and 0.84 +/- 0.02 and surface area densities between 55 +/- 3 and 108 +/- 7 cm(-1). Sodium bicarbonate concentration had the greatest effect on both the porosity and surface area density. The effect of copolymer formulation on the porosity and surface area density was insignificant. From thin sections of the macroporous hydrogels, the profile size distributions were determined as an estimate of the pore size distribution. Two formulations synthesized with varying L-ascorbic acid concentration of 0.05 and 0.1 M had median profile sizes of 50-100 and 150-200 microm, respectively. This novel synthesis method allows for the in situ cross-linking of biodegradable macroporous hydrogels with morpholological properties suitable for consideration as an injectable tissue engineering scaffold.
Amphiphilic block copolymers were synthesized by transesterification of hydrophilic methoxy poly(ethylene glycol) (mPEG) and hydrophobic poly(propylene fumarate) (PPF) and characterized. Four block copolymers were synthesized with a 2:1 mPEG:PPF molar ratio and mPEGs of molecular weights 570, 800, 1960, and 5190 and PPF of molecular weight 1570 as determined by NMR. The copolymers synthesized with mPEG of molecular weights 570 and 800 had 1.9 and 1.8 mPEG blocks per copolymer, respectively, as measured by NMR, representing an ABA-type block copolymer. The number of mPEG blocks of the copolymer decreased with increasing mPEG block length to as low as 1.5 mPEG blocks for copolymer synthesized with mPEG of molecular weight 5190. At a concentration range of 5-25 wt % in phosphate-buffered saline, copolymers synthesized with mPEG molecular weights of 570 and 800 possessed lower critical solution temperatures (LCST) between 40 and 45 degrees C and between 55 and 60 degrees C, respectively. Aqueous solutions of copolymer synthesized with mPEG 570 and 800 also experienced thermoreversible gelation. The sol-gel transition temperature was dependent on the sodium chloride concentration as well as the mPEG block length. The copolymer synthesized from mPEG 570 had a transition temperature between 40 and 20 degrees C with salt concentrations between 1 and 10 wt %, while the sol-gel transition temperatures of the copolymer synthesized from mPEG molecular weight 800 were higher in the range 75-30 degrees C with salt concentrations between 1 and 15 wt %. These novel thermoreversible copolymers are the first biodegradable copolymers with unsaturated double bonds along their macromolecular chain that can undergo both physical and chemical gelation and hold great promise for drug delivery and tissue engineering applications.
Marrow-derived osteoblasts were cultured on poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)) based hydrogels modified in bulk with a covalently linked RGDS model peptide. A poly(ethylene glycol) spacer arm was utilized to covalently link the peptide to the hydrogel. Three P(PF-co-EG) block copolymers were synthesized with varying poly(ethylene glycol) block lengths relative to poly(ethylene glycol) spacer arm. A poly(ethylene glycol) block length of nominal molecular weight 2000 and spacer arm of nominal molecular weight 3400 were found to reduce nonspecific cell adhesion and show RGDS concentration dependent marrow-derived osteoblast adhesion. A concentration of 100 nmol/mL RGDS was sufficient to promote adhesion of 84 +/- 17% of the initial seeded marrow-derived osteoblasts compared with 9 +/- 1% for the unmodified hydrogel after 12 h. Cell spreading was quantified as a method for evaluating adhesivity of cells to the hydrogel. A megacolony migration assay was utilized to assess the migration characteristics of the marrow-derived osteoblasts on RGDS modified hydrogels. Marrow-stromal osteoblasts migration was greater on hydrogels modified with 100 nmol/mL linked RGDS when compared with hydrogels modified with 1000 nmol/mL linked RGDS, while proliferation was not affected. These P(PF-co-EG) hydrogels modified in the bulk with RGDS peptide are potential candidates as in situ forming scaffolds for bone tissue engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.