Glycine oxidase from Pseudoalteromonas luteoviolacea (PlGoxA) is a cysteine tryptophylquinone (CTQ)-dependent enzyme. Sequence analysis and phylogenetic analysis place it in a newly designated subgroup (group IID) of a recently identified family of LodA-like proteins, which are predicted to possess CTQ. The crystal structure of PlGoxA reveals that it is a homotetramer. It possesses an N-terminal domain with no close structural homologues in the Protein Data Bank. The active site is quite small because of intersubunit interactions, which may account for the observed cooperativy toward glycine. Steady-state kinetic analysis yielded the following values: k = 6.0 ± 0.2 s, K = 187 ± 18 μM, and h = 1.77 ± 0.27. In contrast to other quinoprotein amine dehydrogenases and oxidases that exhibit anomalously large primary kinetic isotope effects on the rate of reduction of the quinone cofactor by the amine substrate, no significant primary kinetic isotope effect was observed for this reaction of PlGoxA. The absorbance spectrum of glycine-reduced PlGoxA exhibits features in the range of 400-650 nm that have not previously been seen in other quinoproteins. Thus, in addition to the unusual structural features of PlGoxA, the kinetic and chemical reaction mechanisms of the reductive half-reaction of PlGoxA appear to be distinct from those of other amine dehydrogenases and amine oxidases that use tryptophylquinone and tyrosylquinone cofactors.
LodA is a novel lysine-ε-oxidase which possesses a cysteine tryptophylquinone cofactor. It is the first tryptophylquinone enzyme known to function as an oxidase. A steady-state kinetic analysis shows that LodA obeys a ping-pong kinetic mechanism with values of kcat of 0.22±0.04 s−1, Klysine of 3.2±0.5 µM and KO2 of 37.2±6.1 µM. The kcat exhibited a pH optimum at 7.5 while kcat/Klysine peaked at 7.0 and remained constant to pH 8.5. Alternative electron acceptors could not effectively substitute for O2 in the reaction. A mechanism for the reductive half reaction of LodA is proposed that is consistent with the ping-pong kinetics.
The Rv2633c gene in Mycobacterium tuberculosis is rapidly up-regulated after macrophage infection, suggesting that Rv2633c is involved in M. tuberculosis pathogenesis. However, the activity and role of the Rv2633c protein in host colonization is unknown. Here, we analyzed the Rv2633c protein sequence, which revealed the presence of an HHE cation-binding domain common in hemerythrin-like proteins. Phylogenetic analysis indicated that Rv2633c is a member of a distinct subset of hemerythrin-like proteins exclusive to mycobacteria. The Rv2633c sequence was significantly similar to protein sequences from other pathogenic strains within that subset, suggesting that these proteins are involved in mycobacteria virulence. We expressed and purified the Rv2633c protein in Escherichia coli and found that it contains two iron atoms, but does not behave like a hemerythrin. It migrated as a dimeric protein during size-exclusion chromatography. It was not possible to reduce the protein or observe any evidence for its interaction with O 2 . However, Rv2633c did exhibit catalase activity with a k cat of 1475 s ؊1 and K m of 10.1 ؎ 1.7 mM. Cyanide and azide inhibited the catalase activity with K i values of 3.8 M and 37.7 M, respectively. Rv2633c's activity was consistent with a role in defenses against oxidative stress generated during host immune responses after M. tuberculosis infection of macrophages. We note that Rv2633c is the first example of a non-heme di-iron catalase, and conclude that it is a member of a subset of hemerythrin-like proteins exclusive to mycobacteria, with likely roles in protection against host defenses.
GoxA is a glycine oxidase that possesses a cysteine tryptophylquinone (CTQ) cofactor that is formed by posttranslational modifications that are catalyzed by a modifying enzyme GoxB. It is the second known tryptophylquinone enzyme to function as an oxidase, the other being the lysine ϵ-oxidase, LodA. All other enzymes containing CTQ or tryptophan tryptophylquinone (TTQ) cofactors are dehydrogenases. Kinetic analysis of GoxA revealed allosteric cooperativity for its glycine substrate, but not O This is the first CTQ- or TTQ-dependent enzyme to exhibit cooperativity. Here, we show that cooperativity and homodimer stabilization are strongly dependent on the presence of Phe-237. Conversion of this residue, which is a Tyr in LodA, to Tyr or Ala eliminates the cooperativity and destabilizes the dimer. These mutations also significantly affect the k and K values for the substrates. On the basis of structural and modeling studies, a mechanism by which Phe-237 exerts this influence is presented. Two active site residues, Asp-547 and His-466, were also examined and shown by site-directed mutagenesis to be critical for CTQ biogenesis. This result is compared with the results of similar studies of mutagenesis of structurally conserved residues of other tryptophylquinone enzymes. These results provide insight into the roles of specific active-site residues in catalysis and CTQ biogenesis, as well as describing an interesting mechanism by which a single residue can dictate whether or not an enzyme exhibits cooperative allosteric behavior toward a substrate.
Site-directed mutagenesis identified residues in the substrate channel of LodA that play multiple roles in regulating Km values of substrates, kcat and the extent of biosynthesis of the protein-derived cysteine tryptophylquinone (CTQ) cofactor. Mutations of Cys448 increase Km values for lysine and O2, with the larger effect on Klysine. Tyr211 resides within a mobile loop and is seen in the crystal structure of LodA to form a hydrogen bond with Lys530 that appears to stabilize its position in the channel. Y211F LodA had reduced levels of CTQ but near normal levels of kcat. K530A and K530R variants exhibited diminished levels of CTQ but significantly increased kcat. The Y211F, K530A and K530R mutations each caused large increases in the Km values for lysine and O2. These effects of the mutations of Tyr211 and Lys530 suggest that when these residues are hydrogen-bonded they may form a gate that controls entry and exit of substrates and products from the active site. Y211A and Y211E variants had the highest level of CTQ but exhibited no activity. These results highlight the different evolutionary factors that must be considered for enzymes which possess protein-derived cofactors, in which the catalytic cofactor must be generated by posttranslational modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.