This letter proposes a deep learning approach for detecting a change in transmitters' or receivers' antenna orientation as a physical tamper attack in OFDM systems using channel state information. We treat the physical tamper attack problem as a semi-supervised anomaly detection problem and utilize a deep convolutional autoencoder (DCAE) to tackle it. The past observations of the estimated channel state information (CSI) are used to train the DCAE. Then, the trained DCAE is deployed on the receiver to perform the physical tamper detection. Our experimental results show that the proposed approach, deployed in an office environment, is able to detect 99.6% of tamper events (TPR = 99.6%) while creating zero false alarms (FPR = 0%).
This paper proposes two deep-learning (DL)-based approaches to a physical tamper attack detection problem in orthogonal frequency division multiplexing (OFDM) systems with multiple receiver antennas based on channel state information (CSI) estimates. The physical tamper attack is considered as the unwanted change of antenna orientation at the transmitter or receiver. Approaching the tamper attack scenario as a semi-supervised anomaly detection problem, the algorithms are trained solely based on tamper-attack-free measurements, while operating in general scenarios that may include physical tamper attacks. Two major challenges in the algorithm design are environmental changes, e.g., moving persons, that are not due to an attack and evaluating the trade-off between detection performance and complexity. Our experimental results from two different environments, comprising an office and a hall, show the proper detection performances of the proposed methods with different complexity levels. The optimal proposed method achieves a 93.32% true positive rate and a 10% false positive rate with a suitable level of complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.