A passive split-and-recombine micromixer was developed based on the concept of lamellar structure and advection mixing type for a serpentine structure. The flow patterns and mixing performance were analyzed using numerical simulation in Reynolds number range of 10≤ Reynolds ≤170. Two design variables, defining the shape of the split-and-recombine branch, were optimized by the local energy dissipation rate as the objective function. The reduction of computation time and the absence of numerical diffusion were the advantages of using the energy dissipation rate as the objective function. At each Reynolds number, 64 sample data was generated on the design space uniformly. Then a model was used based on the Radial basis neural network for the prediction of the objective function. The optimum values of the design variables within the constraint range were found on the response surface. The optimization study was performed at five Reynolds numbers of 10, 50, 90, 130, 170 and the mixing index was improved 0.156, 0.298, 0.417, 0.506, and 0.57, respectively. The effect of design variables on the objective function and the concentration pattern was presented and analyzed. Finally, the mixing characteristic of the split-and-recombine micromixer was studied in a wide range of Reynolds number and the flow was categorized to stratify and show the vortex regime based on the Reynolds number. The optimized split-and-recombine micromixer could be integrated by any system depending on the desired velocity and Reynolds number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.