Enzyme-linked immunosorbent assay (ELISA) is a validated and sensitive method for detection of human autoantibodies, but may have problems with specificity. Non-specific binding is a well-known problem often observed in tests for autoantibodies, when sera are incubated on plastic surfaces, e.g. an ELISA plate. To understand the mechanisms underlying non-specific immunoglobulin deposition, we here analyse the phenomenon in detail and we propose means of reducing false positive test results caused by non-specific binding. The level of non-specific binding, in sera with suspected autoreactivity, was analysed in non-coated and autoantigen-coated ELISA wells and 4-32% of sera showed a high level of non-specific binding depending on the assay conditions and serum properties. Non-specifically binding sera were found to contain increased concentrations of IgG and other inflammatory mediators. Moreover, non-specific binding could be induced in serum by increasing the concentration of IgG and incubating the serum at 40 °C. This suggests that non-specific binding immunoglobulins can be formed during inflammation with high immunoglobulin levels and elevated temperature. We show that the level of non-specific binding correlates with the IgG concentration and therefore propose that non-specific binding may be interpreted as an informative finding indicative of elevated IgG and inflammation.
In this study, a total of 5,094 ticks found on humans were examined in terms of species, development stage, gender, host features and seasonality for a year period. Of these ticks 17 were argasid and 5,077 were ixodid. Predominantly species of the ixodid genera Hyalomma, Dermacentor, Rhipicephalus and Haemaphysalis were found on humans in Ankara (Anatolia). Most abundant were Hyalomma nymphs (29.8%) and adults (28.2%). Primary factors in terms of tick bite risk were region, habitat and season.
Al(OH)3 is the most common adjuvant in human vaccines, but its mode of action remains poorly understood. Complement involvement in the adjuvant properties of Al(OH)3 has been suggested in several reports together with a depot effect. It is here confirmed that Al(OH)3 treatment of serum depletes complement components and activates the complement system. We show that complement activation by Al(OH)3 involves the three major pathways by monitoring complement components in Al(OH)3-treated serum and in Al(OH)3-containing precipitates. Al(OH)3 activation of complement results in deposition of C3 cleavage products and membrane attack complex (MAC) and in generation of the anaphylatoxins C3a and C5a. Complement activation was time dependent and inhibited by chelation with EDTA but not EGTA+Mg2+. We thus confirm that Al(OH)3 activates the complement system and show that the alternative pathway is of major importance.
Crimean Congo Haemorrhagic Fever (CCHF) is an emerging zoonotic disease. The causative agent is a virus (CCHFV), mainly transmitted by ticks of the species Hyalomma marginatum in Eastern Europe and Turkey. In order to test potential scenarios for the control of pathogen spread, the basic reproduction number (R0) for CCHF was calculated. This calculation was based on a population dynamics model and parameter values from the literature for pathogen transmission. The tick population dynamics model takes into account the major processes involved and gives estimates for tick survival from one stage to the other and number of feeding ticks. It also considers the influence of abiotic (meteorological variables) and biotic factors (host densities) on model outputs, which were compared with data collected in Central Anatolia (Turkey). R0 computation was thereafter used to test control strategies and especially the effect of acaricide treatment. Simulation results indicate that such treatments could have valuable effects provided that the acaricide is applied regularly throughout the spring and summer, and over several years. Furthermore, a sensitivity analysis to abiotic and biotic factors showed that, even though temperature has a strong impact on model outputs, host (mainly hare) densities also play a role. The kind of model we have developed provides insight into the ability of different strategies to prevent and control disease spread and has proved its relevance when associated with field trials.
1. A herbal extract containing a blend of three essential oils, derived from oregano, laurel leaf and lavender, was investigated as a feed additive alternative to the conventional anticoccidial sodium monensin. 2. Broilers were infected with a mixture of Eimeria species or left uninfected. Both infected and uninfected broilers were provided with diets containing either herbal extract (HEX), monensin (MON) or without these supplements (CON). The HEX group had 50 mg herbal extract/kg diet and the MON group 100 mg monensin/kg diet. 3. All of the uninfected broilers exhibited higher body weight gain and better feed conversion when compared with their infected counterparts at d 28 and 42 of age. Both HEX and MON supplements caused significant improvements in performance in the infected broilers, but failed to have any effect on uninfected broilers. 4. Faecal oocyst output measured daily by sampling excreta, and expressed on a per bird basis, was lower in the HEX and MON groups than in the CON group. However, the herbal extract was not as effective as monensin in reducing oocyst excretion. Coccidial infection caused a significant increase in total intestinal length and caecal weight, but the dietary treatments did not influence these measurements. 5. These results indicate that providing a herbal extract in the diet was not as effective as monensin in protecting broilers exposed to a coccidial challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.