Bu araştırmanın amacı, yapı geçerliği çalışmalarında kullanılan temel bileşenler analizi yerine bu amaçla geliştirilen yapay sinir ağı modellerinin kullanılabilir olup olmadığını tespit etmektir. Veri indirgeme amacıyla geliştirilen Genelleştirilmiş Hebb Algoritması kullanan yapay sinir ağı modeli ve Kendini Düzenleyen Haritalama olarak adlandırılan diğer yapay sinir ağı modeli bu araştırmanın temel konusudur. Yapı geçerliği çalışması yapmak için 30 maddeden oluşan denemelik Öğretmenlere Yönelik Tutum Ölçeği hazırlanmış ve bu ölçek 400 öğretmen adayına uygulanmıştır. Elde edilen veriler temel bileşenler analizi ve yapay sinir ağı modelleri kullanılarak analiz edilmiştir. Kullanılan farklı yöntemlerden elde edilen ölçek yapılarından hangisinin daha uygun olduğuna karar vermek amacıyla, farklı 400 kişilik bir diğer öğretmen adayı grubundan tekrar veri toplanmış ve bu verilere doğrulayıcı faktör analizi uygulanmıştır. Temel bileşenler analizi ile yapay sinir ağı modellerine dayanarak yapılan doğrulayıcı faktör analizi sonuçları model uyum ve hata indekslerine göre karşılaştırılmıştır. Uyum indekslerine bakıldığında, bu yapılar uyum ve hata indekslerinin çoğu açısından uyumlu yapılardır. Sonuçta, 5x5 nöron üzerinden haritalanan kendini düzenleyen haritalama modelinin, RMSEA indeksi hariç, daha uyumlu sonuçlar verdiği söylenebilir.
ÖzBu araştırmada, yapay sinir ağı modellerinden biri olan kendini düzenleyen haritalama yönteminde kullanılan nöron sayısının, ölçeklerin yapılarını ortaya çıkarmadaki etkililiği incelenmektedir. Bu yöntemde haritalama yaparken kullanılan nöron sayısı değiştikçe, ölçek yapısı farklılaşabilmektedir. Bu çalışmada ölçek yapısını ortaya çıkarmada en uygun nöron sayısının tespiti için kullanılan yöntemler doğrulayıcı faktör analizi ve farklı gruplar yöntemidir. Araştırma bulguları, nöron sayısı arttıkça ölçek yapısının tek faktöre indirgendiği aynı zamanda, tek faktörde ortaya çıkan bu ölçeğin uyum ve hata indeksleri açısından diğerlerine göre daha uyumlu bir model meydana getirdiğini ortaya çıkarmıştır. Bunun yanı sıra farklı gruplar yönteminden elde edilen kanıt da bu durumu desteklemektedir. Sonuç olarak, yapı geçerliği için kullanılan kendini düzenleyen haritalama yönteminde, ölçeğin ilişkili maddeleri tek nöronda toplanıncaya kadar nöron sayısının artırılması önerilmektedir. Buna ek olarak, ortaya çıkan yapının bağlamsal olarak ölçülen tutum değişkeni açısından analiz edilmesi de önerilmektedir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.