Soil quality assessment based on crop yields and identification of key indicators of it can be used for better management of agricultural production. In the current research, the weighted additive soil quality index (SQIw), factor analysis (FA), and multiple linear regression (MLR) are used to assess the soil quality of rainfed winter wheat fields with two soil orders on 53.20 km2 of agricultural land in western Iran. A total of 18 soil quality indicators were determined for 100 soil samples (0–20 cm depth) from two soil orders (Inceptisols and Entisols). The soil properties measured were: pH, soil texture, organic carbon (OC), cation exchange capacity (CEC), electrical conductivity (EC), soil microbial respiration (SMR), carbonate calcium equivalent (CCE), soil porosity (SP), bulk density (BD), exchangeable sodium percentage (ESP), mean weight diameter (MWD), available potassium (AK), total nitrogen (TN), available phosphorus (AP), available Fe (AFe), available Zn (AZn), available Mn (AMn), and available Cu (ACu). Wheat grain yield for all of the 100 sampling sites was also gathered. The SQIw was calculated using two weighting methods (FA and MLR) and maps were created using a digital soil mapping framework. The soil indicators determined for the minimum data set (MDS) were AK, clay, CEC, AP, SMR, and sand. The correlation between the MLR weighting technique (SQIw-M) and the rainfed wheat yield (r = 0.62) was slightly larger than that the correlation of yield with the FA weighted technique (SQIw-F) (r = 0.58). Results showed that the means of both SQIw-M and SQIw-F and rainfed wheat yield for Inceptisols were higher than for Entisols, although these differences were not statistically significant. Both SQIw-M and SQIw-F showed that areas with Entisols had lower proportions of good soil quality grades (Grades I and II), and higher proportions of poor soil quality grades (Grades IV and V) compared to Inceptisols. Based on these results, soil type must be considered for soil quality assessment in future studies to maintain and enhance soil quality and sustainable production. The overall soil quality of the study region was of poor and moderate grades. To improve soil quality, it is therefore recommended that effective practices such as the implementation of scientifically integrated nutrient management involving the combined use of organic and inorganic fertilizers in rainfed wheat fields should be promoted.
Soil quality assessment based on crop yields and identification of key indicators of it can be used for better management of agricultural production. In the current research, the weighted additive soil quality index (SQIw), factor analysis (FA) and multiple linear regression (MLR) method are used to assess the soil quality of rainfed winter wheat fields with two soil orders on 53.20 km2 of agricultural land in western Iran. A total of 18 soil quality indicators were determined for 100 soil samples (0-20 cm depth) from two soil orders (Inceptisols and Entisols). The soil properties measured were: pH, soil texture, organic carbon (OC), cation exchange capacity (CEC), electrical conductivity (EC), soil microbial respiration (SMR), carbonate calcium equivalent (CCE), soil porosity (SP), bulk density (BD), exchangeable sodium percentage (ESP), mean weight diameter (MWD), available potassium (AK), total nitrogen (TN), available phosphorus (AP), available Fe (AFe), available Zn (AZn), available Mn (AMn), and available Cu (ACu). Mean wheat grain yield for the two years for all of the 100 sampling sites was also gathered. The SQIw was calculated using two weighting methods (FA and MLR) and maps were created using a digital soil mapping framework. The soil indicators taken in the minimum data set (MDS) were AK, clay, CEC, AP, SMR, and sand. The correlation between the MLR weighting technique (SQI-M) and the rainfed wheat yield (r=0.62) was slightly larger than that the correlation of yield with the FA weighted technique (SQI-F) (r=0.58). Results showed that the means of both SQI-M and SQI-F and rainfed wheat yield for Inceptisols were higher than for Entisols although these differences were not statistically significant. Both SQI-M and SQI-F showed that areas with Entisols had lower proportions of good soil quality grades (Grade I and II), and higher proportions of poor soil quality grades (Grade IV and V) compared to Inceptisols. Based on these results, soil type must be considered for soil quality assessment in future studies to maintain and enhance soil quality and sustainable production. The overall soil quality of the study region was of poor and moderate grades. To improve soil quality, it is therefore recommended that effective practices such as the implementation of scientific integrated nutrient management involving the combined use of organic and inorganic fertilizers in rainfed wheat fields be promoted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.