The kidney exchange programs bring new insights in the field of organ transplantation. They make the previously not allowed surgery of incompatible patient-donor pairs easier to be performed on a large scale. Mathematically, the kidney exchange is an optimization problem for the number of possible exchanges among the incompatible pairs in a given pool. Also, the optimization modeling should consider the expected quality-adjusted life of transplant candidates and the shortage of computational and operational hospital resources. In this article, we introduce a bio-inspired stochastic-based Ant Lion Optimization, ALO, algorithm to the kidney exchange space to maximize the number of feasible cycles and chains among the pool pairs. Ant Lion Optimizer-based program achieves comparable kidney exchange results to the deterministic-based approaches like integer programming. Also, ALO outperforms other stochastic-based methods such as Genetic Algorithm in terms of the efficient usage of computational resources and the quantity of resulting exchanges. Ant Lion Optimization algorithm can be adopted easily for on-line exchanges and the integration of weights for hard-to-match patients, which will improve the future decisions of kidney exchange programs. A reference implementation for ALO algorithm for kidney exchanges is written in MATLAB and is GPL licensed. It is available as free open-source software from: https://github.com/SaraEl-Metwally/ALO_algorithm_for_Kidney_Exchanges.
IoT applications have become a pillar for enhancing the quality of life. However, the increasing amount of data generated by IoT devices places pressure on the resources of traditional cloud data centers. This prevents cloud data centers from fulfilling the requirements of IoT applications, particularly delay-sensitive applications. Fog computing is a relatively recent computing paradigm that extends cloud resources to the edge of the network. However, task scheduling in this computing paradigm is still a challenge. In this study, a semidynamic real-time task scheduling algorithm is proposed for bag-of-tasks applications in the cloud–fog environment. The proposed scheduling algorithm formulates task scheduling as a permutation-based optimization problem. A modified version of the genetic algorithm is used to provide different permutations for arrived tasks at each scheduling round. Then, the tasks are assigned, in the order defined by the best permutation, to a virtual machine, which has sufficient resources and achieves the minimum expected execution time. A conducted optimality study reveals that the proposed algorithm has a comparative performance with respect to the optimal solution. Additionally, the proposed algorithm is compared with first fit, best fit, the genetic algorithm, and the bees life algorithm in terms of makespan, total execution time, failure rate, average delay time, and elapsed run time. The experimental results show the superiority of the proposed algorithm over the other algorithms. Moreover, the proposed algorithm achieves a good balance between the makespan and the total execution cost and minimizes the task failure rate compared to the other algorithms. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.