We show how the quantum paradigm can be used to speed up unsupervised learning algorithms. More precisely, we explain how it is possible to accelerate learning algorithms by quantizing some of their subroutines. Quantization refers to the process that partially or totally converts a classical algorithm to its quantum counterpart in order to improve performance. In particular, we give quantized versions of clustering via minimum spanning tree, divisive clustering and k-medians that are faster than their classical analogues. We also describe a distributed version of k-medians that allows the participants to save on the global communication cost of the protocol compared to the classical version. Finally, we design quantum algorithms for the construction of a neighbourhood graph, outlier detection as well as smart initialization of the cluster centres.
Recommender systems enable merchants to assist customers in finding products that best satisfy their needs. Unfortunately, current recommender systems suffer from various privacy-protection vulnerabilities. Customers should be able to keep private their personal information, including their buying preferences, and they should not be tracked against their will. The commercial interests of merchants should also be protected by allowing them to make accurate recommendations without revealing legitimately compiled valuable information to third parties. We introduce a theoretical approach for a system called Alambic, which achieves the above privacy-protection objectives in a hybrid recommender system that combines content-based, demographic and collaborative filtering techniques. Our system splits customer data between the merchant and a semi-trusted third party, so that neither can derive sensitive information from their share alone. Therefore, the system could only be subverted by a coalition between these two parties.
Online social networks (OSNs) are rapidly growing and have become a huge source of all kinds of global and local news for millions of users. However, OSNs are a double-edged sword. Although the great advantages they offer such as unlimited easy communication and instant news and information, they can also have many disadvantages and issues. One of their major challenging issues is the spread of fake news. Fake news identification is still a complex unresolved issue. Furthermore, fake news detection on OSNs presents unique characteristics and challenges that make finding a solution anything but trivial. On the other hand, artificial intelligence (AI) approaches are still incapable of overcoming this challenging problem. To make matters worse, AI techniques such as machine learning and deep learning are leveraged to deceive people by creating and disseminating fake content. Consequently, automatic fake news detection remains a huge challenge, primarily because the content is designed in a way to closely resemble the truth, and it is often hard to determine its veracity by AI alone without additional information from third parties. This work aims to provide a comprehensive and systematic review of fake news research as well as a fundamental review of existing approaches used to detect and prevent fake news from spreading via OSNs. We present the research problem and the existing challenges, discuss the state of the art in existing approaches for fake news detection, and point out the future research directions in tackling the challenges.
By the term "quantization", we refer to the process of using quantum mechanics in order to improve a classical algorithm, usually by making it go faster. In this paper, we initiate the idea of quantizing clustering algorithms by using variations on a celebrated quantum algorithm due to Grover. After having introduced this novel approach to unsupervised learning, we illustrate it with a quantized version of three standard algorithms: divisive clustering, k-medians and an algorithm for the construction of a neighbourhood graph. We obtain a significant speedup compared to the classical approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.