Defective cardiac mechanical activity in diabetes results from alterations in intracellular Ca2+ handling, in part, due to increased oxidative stress. Beta-blockers demonstrate marked beneficial effects in heart dysfunction with scavenging free radicals and/or acting as an antioxidant. The aim of this study was to address how β-blocker timolol-treatment of diabetic rats exerts cardioprotection. Timolol-treatment (12-week), one-week following diabetes induction, prevented diabetes-induced depressed left ventricular basal contractile activity, prolonged cellular electrical activity, and attenuated the increase in isolated-cardiomyocyte size without hyperglycemic effect. Both in vivo and in vitro timolol-treatment of diabetic cardiomyocytes prevented the altered kinetic parameters of Ca2+ transients and reduced Ca2+ loading of sarcoplasmic reticulum (SR), basal intracellular free Ca2+ and Zn2+ ([Ca2+]i and [Zn2+]i), and spatio-temporal properties of the Ca2+ sparks, significantly. Timolol also antagonized hyperphosphorylation of cardiac ryanodine receptor (RyR2), and significantly restored depleted protein levels of both RyR2 and calstabin2. Western blot analysis demonstrated that timolol-treatment also significantly normalized depressed levels of some [Ca2+]i-handling regulators, such as Na+/Ca2+ exchanger (NCX) and phospho-phospholamban (pPLN) to PLN ratio. Incubation of diabetic cardiomyocytes with 4-mM glutathione exerted similar beneficial effects on RyR2-macromolecular complex and basal levels of both [Ca2+]i and [Zn2+]i, increased intracellular Zn2+ hyperphosphorylated RyR2 in a concentration-dependent manner. Timolol also led to a balanced oxidant/antioxidant level in both heart and circulation and prevented altered cellular redox state of the heart. We thus report, for the first time, that the preventing effect of timolol, directly targeting heart, seems to be associated with a normalization of macromolecular complex of RyR2 and some Ca2+ handling regulators, and prevention of Ca2+ leak, and thereby normalization of both [Ca2+]i and [Zn2+]i homeostasis in diabetic rat heart, at least in part by controlling the cellular redox status of hyperglycemic cardiomyocytes.
Little is known about metabolic syndrome (MetS)-associated cardiomyopathy, especially in relation to the role and contribution of beta-adrenoceptor (β-AR) subtypes. Therefore, we examined the roles of β-AR subtypes in the cardiac function of rats with MetS (MetS group) and compared it with that of rats with streptozotocin (STZ)-induced diabetes (STZ group). Compared with the normal control rats, the protein levels of cardiac β1- and β2-AR in the MetS group were significantly decreased and with no changes in their mRNA levels, whereas the protein levels of β3-AR were similar to those of the controls. However, as shown previously, the protein levels of cardiac β1- and β2-AR in the STZ group were decreased, whereas the β3-AR levels were significantly increased by comparison with the controls. Additionally, the mRNA levels of β2- and β3-AR were increased, but β1-AR mRNA was decreased in the STZ group. Furthermore, left ventricular developed pressure responses to β3-AR agonist BRL37344 were increased in the STZ group but not in the MetS group, whereas for both groups, the responses to noradrenaline were not different from those of the controls. However, the response to stimulation with high concentrations of fenoterol was depressed in the MetS group, compared with the controls, but not in the STZ group. Consequently, our data suggest that the contribution of the β-AR system to cardiac dysfunction in the rats with MetS is not the same as that in the STZ group, although they have similar cardiac dysfunction with similar ultrastructural changes to the myocardium.
We examined whether cellular antioxidant-defence enhancement preserves diastolic dysfunction via regulation of both diastolic intracellular free Zn2+ and Ca2+ levels ([Zn2+]i and [Ca2+]i) levels N-acetyl cysteine (NAC) treatment (4 weeks) of diabetic rats preserved altered cellular redox state and also prevented diabetes-induced tissue damage and diastolic dysfunction with marked normalizations in the resting [Zn2+]i and [Ca2+]i. The kinetic parameters of transient changes in Zn2+ and Ca2+ under electrical stimulation and the spatiotemporal properties of Zn2+ and Ca2+ sparks in resting cells are found to be normal in the treated diabetic group. Biochemical analysis demonstrated that the NAC treatment also antagonized hyperphosphorylation of cardiac ryanodine receptors (RyR2) and significantly restored depleted protein levels of both RyR2 and calstabin2. Incubation of cardiomyocytes with 10 µM ZnCl2 exerted hyperphosphorylation in RyR2 as well as higher phosphorphorylations in both PKA and CaMKII in a concentration-dependent manner, similar to hyperglycemia. Our present data also showed that a subcellular oxidative stress marker, NF-κB, can be activated if the cells are exposed directly to Zn2+. We thus for the first time report that an enhancement of antioxidant defence in diabetics via directly targeting heart seems to prevent diastolic dysfunction due to modulation of RyR2 macromolecular-complex thereby leading to normalized [Ca2+]i and [Zn2+]i
in cardiomyocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.