Purpose: In selective internal radiation therapy (SIRT), an accurate total liver segmentation is required for activity prescription and absorbed dose calculation. Our goal was to investigate the feasibility of using automatic liver segmentation based on a convolutional neural network (CNN) for CT imaging in SIRT, and the ability of CNN to reduce inter-observer variability of the segmentation. Methods: A multi-scale CNN was modified for liver segmentation for SIRT patients. The CNN model was trained with 139 datasets from three liver segmentation challenges and 12 SIRT patient datasets from our hospital. Validation was performed on 13 SIRT datasets and 12 challenge datasets. The model was tested on 40 SIRT datasets. One expert manually delineated the livers and adjusted the liver segmentations from CNN for 40 test SIRT datasets. Another expert performed the same tasks for 20 datasets randomly selected from the 40 SIRT datasets. The CNN segmentations were compared with the manual and adjusted segmentations from the experts. The difference between the manual segmentations was compared with the difference between the adjusted segmentations to investigate the inter-observer variability. Segmentation difference was evaluated through Dice Similarity Coefficient (DSC), Volume Ratio (RV), Mean Surface Distance (MSD), and Hausdorff Distance (HD). Results: The CNN segmentation achieved a median DSC of 0.94 with the manual segmentation and of 0.98 with the manually corrected CNN segmentation, respectively. The DSC between the adjusted segmentations is 0.98, which is 0.04 higher than the DSC between the manual segmentations. Conclusion: The CNN model achieved good liver segmentations on CT images of good image quality, with relatively normal liver shapes and low tumor burden. 87.5% of the 40 CNN segmentations only needed slight adjustments for clinical use. However, the trained model failed on SIRT data with low dose or contrast, lesions with large density difference from their surroundings, and abnormal liver position and shape. The abovementioned scenarios were not adequately represented in the training data. Despite this limitation, the current CNN is already a useful clinical tool which improves inter-observer agreement and therefore contributes to the standardisation of the dosimetry. A further improvement is expected when the CNN will be trained with more data from SIRT patients.
We have developed a multi-modal imaging approach for SIRT, combining 99m Tc-MAA SPECT/CT and/or 90 Y PET, 18 F-FDG PET/CT, and contrast-enhanced CBCT for voxel-based dosimetry, as a tool for treatment planning and verification. For radiation dose prediction calculations, a segmentation of the total liver volume and of the liver perfusion territories is required. Method: In this paper, we proposed a procedure for multi-modal image analysis to assist SIRT treatment planning. The pre-treatment 18 F-FDG PET/CT, 99m Tc-MAA SPECT/CT, and contrast-enhanced CBCT images were registered to a common space using an initial rigid, followed by a deformable registration. The registration was scored by an expert using Likert scores. The total liver was segmented semi-automatically based on the PET/CT and SPECT/CT images, and the liver perfusion territories were determined based on the CBCT images. The segmentations of the liver and liver lobes were compared to the manual segmentations by an expert on a CT image. Result: Our methodology showed that multi-modal image analysis can be used for determination of the liver and perfusion territories using CBCT in SIRT using all pre-treatment studies. The results for image registration showed acceptable alignment with limited impact on dosimetry. The image registration performs well according to the expert reviewer (scored as perfect or with little misalignment in 94% of the cases). The semi-automatic liver segmentation agreed well with manual liver segmentation (dice coefficient of 0.92 and an average Hausdorff distance of 3.04 mm). The results showed disagreement between lobe segmentation using CBCT images compared to lobe segmentation based on CT images (average Hausdorff distance of 14.18 mm), with a high impact on the dosimetry (differences up to 9 Gy for right and 21 Gy for the left liver lobe). Conclusion: This methodology can be used for pre-treatment dosimetry and for SIRT planning including the determination of the activity that should be administered to achieve the therapeutical goal. The inclusion of perfusion CBCT enables perfusion-based definition of the liver lobes, which was shown to be markedly different from the anatomical definition in some of the patients.
Purpose Selective internal radiation therapy (SIRT) requires a good liver registration of multi-modality images to obtain precise dose prediction and measurement. This study investigated the feasibility of liver registration of CT and MR images, guided by segmentation of the liver and its landmarks. The influence of the resulting lesion registration on dose estimation was evaluated. Methods The liver segmentation was done with a convolutional neural network (CNN), and the landmarks were segmented manually. Our image-based registration software and its liver-segmentation-guided extension (CNN-guided) were tuned and evaluated with 49 CT and 26 MR images from 20 SIRT patients. Each liver registration was evaluated by the root mean square distance (RMSD) of mean surface distance between manually delineated liver contours and mass center distance between manually delineated landmarks (lesions, clips, etc.). The root mean square of RMSDs (RRMSD) was used to evaluate all liver registrations. The CNN-guided registration was further extended by incorporating landmark segmentations (CNN&LM-guided) to assess the value of additional landmark guidance. To evaluate the influence of segmentation-guided registration on dose estimation, mean dose and volume percentages receiving at least 70 Gy (V70) estimated on the 99mTc-labeled macro-aggregated albumin (99mTc-MAA) SPECT were computed, either based on lesions from the reference 99mTc-MAA CT (reference lesions) or from the registered floating CT or MR images (registered lesions) using the CNN- or CNN&LM-guided algorithms. Results The RRMSD decreased for the floating CTs and MRs by 1.0 mm (11%) and 3.4 mm (34%) using CNN guidance for the image-based registration and by 2.1 mm (26%) and 1.4 mm (21%) using landmark guidance for the CNN-guided registration. The quartiles for the relative mean dose difference (the V70 difference) between the reference and registered lesions and their correlations [25th, 75th; r] are as follows: [− 5.5% (− 1.3%), 5.6% (3.4%); 0.97 (0.95)] and [− 12.3% (− 2.1%), 14.8% (2.9%); 0.96 (0.97)] for the CNN&LM- and CNN-guided CT to CT registrations, [− 7.7% (− 6.6%), 7.0% (3.1%); 0.97 (0.90)] and [− 15.1% (− 11.3%), 2.4% (2.5%); 0.91 (0.78)] for the CNN&LM- and CNN-guided MR to CT registrations. Conclusion Guidance by CNN liver segmentations and landmarks markedly improves the performance of the image-based registration. The small mean dose change between the reference and registered lesions demonstrates the feasibility of applying the CNN&LM- or CNN-guided registration to volume-level dose prediction. The CNN&LM- and CNN-guided registrations for CTs can be applied to voxel-level dose prediction according to their small V70 change for most lesions. The CNN-guided MR to CT registration still needs to incorporate landmark guidance for smaller change of voxel-level dose estimation.
Background Selective internal radiation therapy (SIRT) is a promising treatment for unresectable hepatic malignancies. Predictive dose calculation based on a simulation using 99 m Tc-labeled macro-aggregated albumin ( 99 m Tc-MAA) before the treatment is considered as a potential tool for patient-specific treatment planning. Post-treatment dose measurement is mainly performed to confirm the planned absorbed dose to the tumor and non-tumor liver volumes. This study compared the predicted and measured absorbed dose distributions. Methods Thirty-one patients (67 tumors) treated by SIRT with resin microspheres were analyzed. Predicted and delivered absorbed dose was calculated using 99 m Tc-MAA-SPECT and 90 Y-TOF-PET imaging. The voxel-level dose distribution was derived using the local deposition model. Liver perfusion territories and tumors have been delineated on contrast-enhanced CBCT images, which have been acquired during the 99 m Tc-MAA work-up. Several dose-volume histogram (DVH) parameters together with the mean dose for liver perfusion territories and non-tumoral and tumoral compartments were evaluated. Results A strong correlation between the predicted and measured mean dose for non-tumoral volume was observed ( r = 0.937). The ratio of measured and predicted mean dose to this volume has a first, second, and third interquartile range of 0.83, 1.05, and 1.25. The difference between the measured and predicted mean dose did not exceed 11 Gy. The correlation between predicted and measured mean dose to the tumor was moderate ( r = 0.623) with a mean difference of − 9.3 Gy. The ratio of measured and predicted tumor mean dose had a median of 1.01 with the first and third interquartile ranges of 0.58 and 1.59, respectively. Our results suggest that 99 m Tc-MAA-based dosimetry could predict under or over dosing of the non-tumoral liver parenchyma for almost all cases. For more than two thirds of the tumors, a predictive absorbed dose correctly indicated either good tumor dose coverage or under-dosing of the tumor. Conclusion Our results highlight the predictive value of 99 m Tc-MAA-based dose estimation to predict non-tumor liver irradiation, which can be applied to prescribe an optimized activity aiming at avoiding liver toxicity. Compared to non-tumoral tissue, a poorer agreement between predicted and measured absorbed dose is observed for tumors.
Background: Selective internal radiation therapy (SIRT) is a promising treatment for unresectable hepatic malignancies. Predictive dose calculation based on a simulation using technetium-99m-labeled macro-aggregated albumin ( 99m Tc-MAA) before the treatment is considered as a potential tool for patient-specific treatment planning. Post-treatment dose measurement is mainly performed to confirm the planned absorbed dose to the tumor and non-tumor liver volumes. This study compared the predicted and measured absorbed dose distributions. Methods: Thirty-one patients (67 tumors) treated by SIRT with resin microspheres were analyzed. Predicted and delivered absorbed dose was calculated using 99m Tc-MAA-SPECT and 90 Y TOF-PET imaging. The voxel-level dose distribution was derived using the local deposition model. Liver perfusion territories and tumors have been delineated on contrast-enhanced CBCT images, which have been acquired during the 99m Tc-MAA work-up. Several dose-volume histogram (DVH) parameters together with the mean dose for liver perfusion territories, non-tumoral and tumoral compartments were evaluated. Results: A strong correlation between the predicted and measured mean dose for non-tumoral volume was observed (r=0.937). The ratio of measured and predicted mean dose to this volume has a first, second, and third quartile range of 0.83, 1.05, and 1.25. The difference between the measured and predicted mean dose did not exceed 11 Gy. The correlation between predicted and measured mean dose to the tumor was moderate (r=0.623) with a mean difference of -9.3 Gy. The ratio of measured and predicted tumor mean dose had a median of 1.01 with the first and third quartile ranges of 0.58 and 1.59, respectively. Our results suggest that 99m Tc-MAA-based dosimetry could predict under or over dosing of the non-tumoral liver parenchyma for almost all cases. For more than two-thirds of the tumors, a predictive absorbed dose correctly indicated either good tumor dose coverage or under-dosing of the tumor. Conclusion: Our results highlight the predictive value of 99m Tc-MAA-based dose estimation to predict non-tumor liver irradiation, which can be applied to prescribe an optimized activity aiming at avoiding liver toxicity. Predictive dosimetry is also moderately reliable to estimate the tumor absorbed dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.