Numerous studies have recently reported on the discovery of bee viruses in different arthropod species and their possible transmission routes, vastly increasing our understanding of these viruses and their distribution. Here, we review the current literature on the recent advances in understanding the transmission of viruses, both on the presence of bee viruses in Apis and non-Apis bee species and on the discovery of previously unknown bee viruses. The natural transmission of bee viruses will be discussed among different bee species and other insects. Finally, the research potential of in vivo (host organisms) and in vitro (cell lines) serial passages of bee viruses is discussed, from the perspective of the host-virus landscape changes and potential transmission routes for emerging bee virus infections.
Western honey bees, Apis mellifera, live in highly eusocial colonies that are each typically headed by a single queen. The queen is the sole reproductive female in a healthy colony, and because long-term colony survival depends on her ability to produce a large number of offspring, queen health is essential for colony success. Honey bees have recently been experiencing considerable declines in colony health. Among a number of biotic and abiotic factors known to impact colony health, disease and queen failure are repeatedly reported as important factors underlying colony losses. Surprisingly, there are relatively few studies on the relationship and interaction between honey bee diseases and queen quality. It is critical to understand the negative impacts of pests and pathogens on queen health, how queen problems might enable disease, and how both factors influence colony health. Here, we review the current literature on queen reproductive potential and the impacts of honey bee parasites and pathogens on queens. We conclude by highlighting gaps in our knowledge on the combination of disease and queen failure to provide a perspective and prioritize further research to mitigate disease, improve queen quality, and ensure colony health.
SummaryDiseases are known to be one of the major contributors to colony losses. Within a Europe-wide experiment on genotype -environment interactions, an initial 621 colonies were set up and maintained from 2009 to 2012. The colonies were monitored to investigate the occurrence and levels of key pathogens. These included the mite Varroa destructor (mites per 10 g bees), Nosema spp. (spore loads and species determination), and viruses (presence/absence of acute bee paralysis virus (ABPV) and deformed wing virus (DWV)). Data from 2010 to the spring of 2011 are analysed in relation to the parameters: genotype, environment, and origin (local vs. non-local) of the colonies in the experiment. The relative importance of different pathogens as indicators of colony death within the experiment is compared. In addition, pathogen occurrence rates across the geographic locations are described.
216Meixner et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.