The human visual system (HVS) can process large quantities of visual information instantly. Visual saliency perception is the process of locating and identifying regions with a high degree of saliency from a visual standpoint. Mesh saliency detection has been studied extensively in recent years, but few studies have focused on 3D point cloud saliency detection. The estimation of visual saliency is important for computer graphics tasks such as simplification, segmentation, shape matching and resizing. In this paper, we present a method for the direct detection of saliency on unorganized point clouds. First, our method computes a set of overlapping neighborhoods and estimates adescriptor vector for each point inside it. Then, the descriptor vectors are used as a natural dictionary in order to apply a sparse coding process. Finally, we estimate a saliency map of the point neighborhoods based on the Minimum Description Length (MDL) principle.Experiment results show that the proposed method achieves similar results to those from the literature review and in some cases even improves on them. It captures the geometry of the point clouds without using any topological information and achieves an acceptable performance. The effectiveness and robustness of our approach are shown by comparing it to previous studies in the literature review.
El propósito de la reconstrucción tridimensional es convertir una gran cantidad de datos o puntos, en un modelo en la memoria del computador, manteniendo sus características físicas de volumen y forma, para llevarlo posteriormente a una figura real por medio de alguna de las diferentes técnicas de impresión 3D. La reconstrucción 3D tiene un amplio rango de aplicaciones entre las cuales se encuentran, el diseño asistido por computador CAD/CAM, la computación gráfica, el entretenimiento, los procesos de manufactura en la industria, la robótica, la visualización científica, la medicina, la cultura, entre otras.En esta Artículo se propone un método que, tomando como base la nube de puntos de un objeto previamente escaneado, calcula una serie de cortes a lo largo del eje principal del objeto, el cual es estimado usando Análisis de Componentes Principales (PCA). Estos cortes, pueden ser impresos en diferentes tipos de materiales (Poliestireno, MDF, Espuma, Cartón, Madera etc.) para luego obtener una reproducción a mayor escala del objeto escaneado. Por tratarse de puntos, se facilita el trabajo para ampliar el tamaño del objeto usando interpolación u otro método equivalente.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.