Cardiac electromechanical simulations of the heart with fibers extracted from experimental data produce functional scores closer to healthy ranges than rule-based models disregarding architecture connectivity.
Virtual bronchoscopy (VB) is a non-invasive exploration tool for intervention planning and navigation of possible pulmonary lesions (PLs). A VB software involves the location of a PL and the calculation of a route, starting from the trachea, to reach it. The selection of a VB software might be a complex process, and there is no consensus in the community of medical software developers in which is the best-suited system to use or framework to choose. The authors present Bronchoscopy Exploration (BronchoX), a VB software to plan biopsy interventions that generate physician-readable instructions to reach the PLs. The authors’ solution is open source, multiplatform, and extensible for future functionalities, designed by their multidisciplinary research and development group. BronchoX is a compound of different algorithms for segmentation, visualisation, and navigation of the respiratory tract. Performed results are a focus on the test the effectiveness of their proposal as an exploration software, also to measure its accuracy as a guiding system to reach PLs. Then, 40 different virtual planning paths were created to guide physicians until distal bronchioles. These results provide a functional software for BronchoX and demonstrate how following simple instructions is possible to reach distal lesions from the trachea.
In this paper, we present an approach to create assets using procedural algorithms in maps generation and dynamic adaptation of characters for a MOBA video game, preserving the balancing feature to players. Maps are created based on offering equal chances of winning or losing for both teams. Also, a character adaptation system is developed which allows changing the attributes of players in real-time according to their behaviour, always maintaining the game balanced. Our tests show the effectiveness of the proposed algorithms to establish the adequate values in a MOBA video game.
The usage of medical images is part of the clinical daily in several healthcare centers around the world. Particularly, Computer Tomography (CT) images are an important key in the early detection of suspicious lung lesions. The CT image exploration allows the detection of lung lesions before any invasive procedure (e.g. bronchoscopy, biopsy). The effective localization of lesions is performed using different image processing and computer vision techniques. Lately, the usage of deep learning models into medical imaging from detection to prediction shown that is a powerful tool for Computeraided software. In this paper, we present an approach to localize pulmonary lung lesion using fuzzy deep learning. Our approach uses a simple convolutional neural network based using the LIDC-IDRI dataset. Each image is divided into patches associated a probability vector (fuzzy) according their belonging to anatomical structures on a CT. We showcase our approach as part of a full CAD system to exploration, planning, guiding and detection of pulmonary lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.