Computerized path planning, not constrained to transportation networks, may be useful in a range of settings, from search and rescue to archaeology. This paper develops a method for general path planning intended to work across arbitrary distances and at the level of terrain detail afforded by aerial LiDAR scanning. Relevant information about terrain, trails, roads, and other infrastructure is encoded in a large directed graph. This basal graph is partitioned into strongly connected subgraphs such that the generalized diameter of each subgraphs is constrained by a set value, and with nominally as few subgraphs as possible. This is accomplished using the k-center algorithm adapted with heuristics suitable for large spatial graphs. A simplified graph results, with reduced (but known) position accuracy and complexity. Using a hierarchy of simplified graphs adapted to different length scales, and with careful selection of levels in the hierarchy based on geodesic distance, a shortest path search can be restricted to a small subset of the basal graph. The method is formulated using matrix-graph duality, suitable for linear algebra-oriented software.This contribution has been peer-reviewed. https://doi.org/10.5194/isprs-archives-XLII-4-W8-109-2018 | © Authors 2018. CC BY 4.0 License.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.