Abstract-This work describes a proposal for developing and testing a scalable machine learning architecture able to provide real-time predictions or analytics as a service over domain-independent big data, working on top of the Hadoop ecosystem and providing real-time analytics as a service through a RESTful API. Systems implementing this architecture could provide companies with on-demand tools facilitating the tasks of storing, analyzing, understanding and reacting to their data, either in batch or stream fashion; and could turn into a valuable asset for improving the business performance and be a key market differentiator in this fast pace environment. In order to validate the proposed architecture, two systems are developed, each one providing classical machine-learning services in different domains: the first one involves a recommender system for web advertising, while the second consists in a prediction system which learns from gamers' behavior and tries to predict future events such as purchases or churning. An evaluation is carried out on these systems, and results show how both services are able to provide fast responses even when a number of concurrent requests are made, and in the particular case of the second system, results clearly prove that computed predictions significantly outperform those obtained if random guess was used.
The focus of this paper is the calculation of similarity between two concepts from an ontology for a Human-Like Interaction system. In order to facilitate this calculation, a similarity function is proposed based on five dimensions (sort, compositional, essential, restrictive and descriptive) constituting the structure of ontological knowledge. The paper includes a proposal for computing a similarity function for each dimension of knowledge. Later on, the similarity values obtained are weighted and aggregated to obtain a global similarity measure. In order to calculate those weights associated to each dimension, four training methods have been proposed. The training methods differ in the element to fit: the user, concepts or pairs of concepts, and a hybrid approach. For evaluating the proposal, the knowledge base was fed from WordNet and extended by using a knowledge editing toolkit (Cognos). The evaluation of the proposal is carried out through the comparison of system responses with those given by human test subjects, both providing a measure of the soundness of the procedure and revealing ways in which the proposal may be improved.
-This paper presents the results and conclusions found when predicting the behavior of gamers in commercial videogames datasets. In particular, it uses Variable-Order Markov (VOM) to build a probabilistic model that is able to use the historic behavior of gamers and to infer what will be their next actions. Being able to predict with accuracy the next user's actions can be of special interest to learn from the behavior of gamers, to make them more engaged and to reduce churn rate. In order to support a big volume and velocity of data, the system is built on top of the Hadoop ecosystem, using HBase for real-time processing; and the prediction tool is provided as a service (SaaS) and accessible through a RESTful API. The prediction system is evaluated using a case of study with two commercial videogames, attaining promising results with high prediction accuracies.
This is a postprint version of the following published document: Abstract: This work describes the development of a web recommender system implementing both collaborative filtering and content-based filtering. Moreover, it supports two differ-ent working modes, either sponsored or related, depending on whether websites are to be recommended based on a list of ongoing ad campaigns or in the user preferences. Novel recommendation algorithms are proposed and imple-mented, which fully rely on set operations such as union and intersection in order to compute the set of recommendations to be provided to end users. The recommender system is deployed over a real-time big data architecture designed to work with Apache Hadoop ecosystem, thus supporting horizontal scalability, and is able to provide recommendations as a service by means of a RESTful API. The performance of the recommender is measured, resulting in the system being able to provide dozens of recommendations in few milliseconds in a single-node cluster setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.