Calcium sulfate (CaSO4) is one of the most common evaporites found in the earth’s crust. It can be found as four main variations: gypsum (CaSO4∙2H2O), bassanite (CaSO4∙0.5H2O), soluble anhydrite, and insoluble anhydrite (CaSO4), being the key difference the hydration state of the sulfate mineral. Naica giant crystals’ growth starts from a supersaturated solution in a delicate thermodynamic balance close to equilibrium, where gypsum can form nanocrystals able to grow up to 11–12 m long. The growth rates are reported to be as slow as (1.4 ± 0.2) × 10−5 nm/s, taking thousands of years to form crystals with a unique smoothness and diaphaneity, which may or may not include solid or liquid inclusions. Conservation efforts can be traced back to other gypsum structures found prior to Naica’s. Furthermore, in the last two decades, several authors have explored the unique requirements in which these crystals grow, the characterization of their environment and microclimatic conditions, and the prediction of deterioration scenarios. We present a state-of-the-art review on the mentioned topics. Beyond the findings on the origin, in this work we present the current state and the foreseeable future of these astounding crystals.
The Cave of Giant Crystals of Naica (Chihuahua, Mexico) is a world geological treasure worth to be preserved. These crystals of up to 12 m in length are made of selenite, the macrocrystalline variety of gypsum (CaSO4·2H2O). They have grown for thousands of years until the cave was dried, which allowed the cave and the crystals to be accessible, but exposed their surfaces in contact with air. Gypsum crystals are fragile because of their trend to dehydrate, the possible replacement to CaCO3 upon reactions with atmospheric CO2 as well as their intrinsic mechanical properties. Several laboratory experiments, designed to study the deterioration of selenite crystals under different artificial atmospheric conditions, are presented. Four atmospheric compositions rich in CO2, CH4, NO x , and air were tested for 1 year at temperatures of 25 and 60 °C and in either liquid or gaseous environments. The surface evolution was monitored by optical microscopy, infrared spectrometry, and grazing incidence X-ray diffraction with two-dimensional detectors. Surface alteration and dissolution in a water environment were observed in short exposition times, as well as the formation of bassanite (CaSO4·1/2H2O). Neither anhydrite nor calcite was detected. The gaseous environment constituted the most detrimental conditions to the gypsum crystals integrity.
The giant gypsum crystals of Naica cave have fascinated scientists since their discovery in 2000. Human activity has changed the microclimate inside the cave, making scientists wonder about the potential environmental impact on the crystals. Over the last 9 years, we have studied approximately 70 samples. This paper reports on the detailed chemical–structural characterization of the impurities present at the surface of these crystals and the experimental simulations of their potential deterioration patterns. Selected samples were studied by petrography, optical and electronic microscopy, and laboratory X-ray diffraction. 2D grazing incidence X-ray diffraction, X-ray μ-fluorescence, and X-ray μ-absorption near-edge structure were used to identify the impurities and their associated phases. These impurities were deposited during the latest stage of the gypsum crystal formation and have afterward evolved with the natural high humidity. The simulations of the behavior of the crystals in microclimatic chambers produced crystal dissolution by 1–4% weight fraction under high CO2 concentration and permanent fog, and gypsum phase dehydration under air and CO2 gaseous environment. Our work suggests that most surface impurities are of natural origin; the most significant anthropogenic damage on the crystals is the extraction of water from the caves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.