Floods are one of the most dangerous natural disasters, causing great destruction, damage, and even fatalities worldwide. Flooding is the phenomenon of a sudden increase or even slow increase in the volume of water in a river or stream bed as the result of several possible factors: heavy or very long precipitation, melting snowpack, strong winds over the water, unusually high tides, tsunamis, or the failure of dams, gages, detention basins, or other structures that hold back water. To gain a better understanding of flooding, it is necessary to examine evidence, search for ancient wisdom, and compare flood-management practices in different regions in a chronological perspective. This study reviews flood events caused by rising sea levels and erratic weather from ancient times to the present. In addition, this review contemplates concerns about future flood challenges and possible countermeasures. Thus, it presents a catalogue of past examples in order to present a point of departure for the study of ancient floods and to learn lessons for preparation for future flood incidents including heavy rainfalls, particularly in urbanized areas. The study results show that ancient societies developed multifaceted technologies to cope with floods and many of them are still usable now and may even represent solutions and measures to counter the changing and increasingly more erratic weather of the present.
The October 30, 2020 Samos earthquake (Mw 6.6) affected the Aegean Sea and environs, caused destruction and loss of life in the city of İzmir located 70 km away from the earthquake epicenter. Before this earthquake, water resources were monitored in the areas of Bayraklı, Gülbahçe, and Seferihisar. For this purpose, 10 groundwater monitoring wells were drilled in the Bayraklı area, where groundwater level, temperature, and electrical conductivity changes were monitored at 1-h intervals in 5 wells. Besides physical parameters such as groundwater levels, temperatures and electrical conductivities, hydrogeochemical cations, and anions measured in the study area. Change in the groundwater levels was observed before, during, and after the Samos earthquake. A trend of rising groundwater level was observed two days before the mainshock, to a height of 10 cm, and the level was maintained till the end of the earthquake. The water levels returned to its original height after about 7 to 10 days of the earthquake. Moreover, electrical conductivity (EC) values were changed because of the interaction with the surrounding rocks and well walls, mixing with different waters during the earthquake shaking. The essential anomalies were observed in the geothermal fields of Gülbahçe and Seferihisar. Due to this earthquake, new geothermal springs emerged along the NE-SW trending Gülbahçe and Tuzla faults, located about 50 to 20 km from the Samos earthquake epicenter, respectively. The new geothermal waters are in Na-Cl composition and similar to other geothermal springs in the region. While the recorded water temperatures in the new geothermal springs vary from 40 to 45 °C in Seferihisar, it was measured between 35 and 40 °C in Gülbahçe. Due to these anomalies, it is found essential to monitor the effect of the earthquake on the physical and chemical characteristics of the groundwater and its usefulness in earthquake predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.