Atrial fibrillation (AF) is the most frequent arrhythmia found in clinical practice. In recent studies, a decrease in the development or recurrence of AF was found in hypertensive patients treated with angiotensin-converting enzyme inhibitors or angiotensin receptor-blocking agents. Hypertension is related to an increased wall tension in the atria, resulting in increased stretch of the individual myocyte, which is one of the major stimuli for the remodeling process. In the present study, we used a model of cultured atrial neonatal rat cardiomyocytes under conditions of stretch to provide insight into the mechanisms of the preventive effect of the angiotensin receptor-blocking agent losartan against AF on a molecular level. Stretch significantly increased protein-to-DNA ratio and atrial natriuretic factor mRNA expression, indicating hypertrophy. Expression of genes encoding for the inward rectifier K(+) current (I(K1)), Kir 2.1, and Kir 2.3, as well as the gene encoding for the ultrarapid delayed rectifier K(+) current (I(Kur)), Kv 1.5, was significantly increased. In contrast, mRNA expression of Kv 4.2 was significantly reduced in stretched myocytes. Alterations of gene expression correlated with the corresponding current densities: I(K1) and I(Kur) densities were significantly increased in stretched myocytes, whereas transient outward K(+) current (I(to)) density was reduced. These alterations resulted in a significant abbreviation of the action potential duration. Losartan (1 microM) prevented stretch-induced increases in the protein-to-DNA ratio and atrial natriuretic peptide mRNA expression in stretched myocytes. Concomitantly, losartan attenuated stretch-induced alterations in I(K1), I(Kur), and I(to) density and gene expression. This prevented the stretch-induced abbreviation of action potential duration. Prevention of stretch-induced electrical remodeling might contribute to the clinical effects of losartan against AF.
The aim of this study was to determine the prevalence of autoimmune thyroid disease and the risk of miscarriage in autoimmune thyroid antibody (ATA)-positive women. Eight hundred seventy-six subjects completed the study, and 12.3% were thyroid antibody-positive (4.5% tested positive for both thyroid peroxidase antibody [TPO-Ab] and thyroglobulin autoantibody [Tg-Ab], 4.79% were TPO-Ab-positive only, and 3.1% were Tg-Ab-positive only). Fifty percent of the ATA-positive women and 14.1% of the ATA-negative group had a history of spontaneous abortion. Forty-eight of the ATA-positive women developed postpartum autoimmune thyroid dysfunction (PATD). Of these, 50% had hypothyroidism alone, 31.3% had transient hyperthyroidism followed by hypothyroidism, and 18.8% had transient thyrotoxicosis alone. Of the 48 PATD subjects, 12.5% developed persistent hypothyroidism. None of the ATA-negative women developed any form of thyroid dysfunction. The thyroid-stimulating hormone (TSH) levels in the ATA-positive group were significantly higher than those in the ATA-negative group, and only the ATA-positive women with a history of abortion had significantly higher TSH and lower free thyroxine (FT4) concentrations than the other subgroups. The results revealed a 5.5% prevalence rate for PATD in the study population. In addition to TPO-Ab, Tg-Ab is a useful marker for autoimmune thyroiditis.
Pressure overload is the major stimulus for cardiac hypertrophy. Accumulating evidence suggests an important role for calcium-induced activation of calcineurin in mediating hypertrophic signaling. Hypertrophy is an important risk factor for cardiovascular morbidity and mortality. We therefore employed an in vitro mechanical stretch model of cultured neonatal cardiomyocytes to evaluate proposed mechanisms of calcium-induced calcineurin activation in terms of inhibition of calcineurin activity and hypertrophy. The protein/DNA ratio and ANP gene expression were used as markers for stretch-induced hypertrophy. Stretch increased the calcineurin activity, MCIP1 gene expression and DNA binding of NFATc as well as the protein/DNA ratio and ANP mRNA in a significant manner. The specific inhibitor of calcineurin, cyclosporin A, inhibited the stretch-induced increase in calcineurin activity, MCIP1 gene expression and hypertrophy. The L-type Ca2+ channel blocker nifedipine and a blocker of the Na+/H+ exchanger (cariporide) both suppressed stretch-dependent enhanced calcineurin activity and hypertrophy. Also application of a blocker of the Na+/Ca2+ exchanger (KB-R7943) was effective in preventing calcineurin activation and increases in the protein/DNA ratio. Inhibition of capacitative Ca2+ entry with SKF 96365 was also sufficient to abrogate calcineurin activation and hypertrophy. The blocker of stretch-activated ion channels, streptomycin, was without effect on stretch-induced hypertrophy and calcineurin activity. The present work suggests that of the proposed mechanisms for the calcium-induced activation of calcineurin (L-type Ca2+ channels, capacitative Ca2+ entry, Na+/H+ exchanger, Na+/Ca2+ exchanger and stretch-activated channels) all but stretch-activated channels are possible targets for the inhibition of hypertrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.