The process, which is defined as ultrasonic treatment or cavitation, ensures that the dirt is removed from the surfaces without damaging the fabric surface. There are studies on the ultrasonic washing processes of denim fabrics in the literature, but there is no study on the effect of the cavitation process on the thermal comfort of denim fabrics. For this purpose, denim fabrics were treated at three different times, 15, 30, and 45 minutes, and at two different frequencies 8khz and 16khz in the ultrasonic homogenizer test device. It was observed that the applied cavitation process reduces the air permeability, thermal conductivity, and thermal absorptivity values. On the other hand, the cavitation process increased the water vapour permeability value by cleaning the materials such as dirt and oil on the surface. It can be concluded that the applied cavitation process provides comfort by enabling quick throwing of the sweat to the outer surface, provides less heat conduction from the fabric, and the denim fabric felt warmer after the cavitation process.
Garments should not overload the body during activity and should be chosen in accordance with the ambient conditions. Especially in active sports, sportswear should make a person feel comfortable and increase performance by easily removing excess heat and moisture from the body without interrupting physical activity. In this study, five T-shirts with the same size and weight characteristics, but in different yarn types were produced and analysed. The thermal and water vapour resistance properties of these garments were measured using a thermal manikin system. In addition, thermal camera images were taken at 10-minute intervals during the 50-minute wear trial programme, and skin temperatures were measured from the upper front body and the upper back body with two sensors. The results showed that POS and PM-coded garments made of polyester with low clothing insulation (clo) values were statistically different from CS and CPS coded cotton-containing garments in terms of front and back surface thermal camera images. It was observed that cotton-containing garments were more uncomfortable than polyester and Tencel owing to their higher thermal resistance, garment surface temperature, and skin temperature values. The Tencel garment was measured similarly to the CS and CPS coded garments at the beginning of the activity and measured similarly to the POS and PM coded garments at the end of the activity on both surfaces.
Denim fabrics are very preferred in recent years because it is easy to use and does not require ironing. But there is a limited study about the thermal and sensorial comfort of denim fabrics in the literature. The aim of this paper is to investigate the effect of the denim fabric composition on thermal comfort and sensorial comfort properties of denim fabrics. For this purpose, air permeability, thermal comfort, and water vapour permeability properties of 3/1 Z twill woven denim fabrics have been examined. Also, the Kawabata KES-FB4 system was used for the evaluation of the surface properties of fabric samples. It was found that the fabric with high surface roughness (F2) had a low thermal absorptivity value, and the fabric with low surface roughness (F3) had a high thermal absorptivity value. On the other hand, the lowest friction coefficient (MIU) was found in the lowest thickness value F4 coded fabric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.