Human papillomavirus (HPV) 16 is involved in causing cervical cancer. The E6 and E7 proteins of HPV 16 immortalize human keratinocytes and this is due, at least in part, to inactivation of the tumor suppressor proteins p53 and pRB. These tumor suppressor proteins also regulate the expression of pro-and antiangiogenic factors by cells. For this reason, experiments were conducted to determine whether the expression of E6 and E7 in primary keratinocytes alters the phenotype of these cells such that they express diminished levels of antiangiogenic factors and/or increased levels of proangiogenic factors. To avoid variances in experimental observations, pools of human foreskin keratinocytes from multiple sources were infected with recombinant retrovirus expressing HPV 16 E6 and E7 or control retrovirus. Gene array analysis, RT-PCR, ELISAs and Western blotting showed that in cells expressing HPV 16 E6 and E7, expression levels of two potent angiogenesis inhibitors, thrombospondin-1 and maspin, were lower compared to controls. Additionally, major angiogenesis inducers, interleukin-8 and vascular endothelial growth factor (VEGF), were increased relative to controls. VEGF can be produced as multiple splice variants, all of which are required for the formation of patent blood vessels. The expression of HPV 16 E6 and E7 in keratinocytes augmented expression of VEGF 121, 145, 165 and 189. These observations show that HPV 16 E6 and E7 alter the phenotype of primary keratinocytes, diminishing expression of inhibitors and increasing expression of inducers of angiogenesis. This altered phenotype may permit keratinocytes infected by HPV 16 to play a role in the progression of cancer by permitting tumors to acquire a blood supply permissive of growth and spread.
Oncolytic therapy is a novel anticancer treatment with attenuated lytic viruses such as adenovirus (Ad). These viruses kill the host cells through their lytic replication cycle and are thus distinct from classical gene therapy viruses, which serve as gene delivery agents and do not replicate. Oncolytic Ads are genetically engineered so as to replicate only in cancer cells. Their replication cycle leads to viral multiplication, the killing of the host cells and spreading of the infection throughout the tumor. Following success in preclinical studies, their anti-tumor potential is now being evaluated in the clinic. Three oncolytic Ads (dl1520, Ad5-CD/TKrep, and CV706) have completed Phase I and II clinical trials in cancer patients where their administration via multiple routes and in combination with chemo- or radiotherapies, has demonstrated overall safety. These viruses are being re-engineered to arm them with additional therapeutic genes, bolstering their oncolytic activity with a bystander effect. For example, Ad5-CD/TKrep delivers a therapeutic prodrug-activating (suicide) gene. These data indicate that oncolytic Ads are a promising novel cancer treatment approach that can be combined with other modalities, such as gene therapy and classical chemo- and radiotherapies. Further improvements to enhance their specificity, targeting and oncolytic activity are needed however, as these first-generation viruses showed modest anti-tumor activity. To improve their efficacy in the clinic, it will be important to devise and incorporate novel monitoring techniques in the clinical trials, such as analysis of viral replication in biopsies and through the use of creative noninvasive imaging technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.