The present work aimed at studying the efficacy of mebendazole (MBZ) compared to artemisinin (ART) for the treatment of trichinellosis at various phases of infection. Seventy Swiss albino mice were orally infected by 300 Trichinella spiralis (T. spiralis) larvae. Mice were divided into infected untreated control group and infected groups treated with 50 mg kg−1 MBZ and 300 mg kg−1 ART for three and five consecutive days, respectively, at the enteral phase [2–4 days post infection (PI)], invasive phase (10–12 days PI) and encapsulated phase (28–30 days PI). All mice were sacrificed 35–42 days PI. MBZ and ART revealed a significant decrease in mean larval counts and increase of larval per cent reduction (LR %) when treatment was initiated during the enteral phase compared to the other phases. MBZ showed significantly higher LR % (99.7, 83.95 and 89.65%) than ART (80.58, 67.0 and 79.2%) when administered at the three infection phases. Histopathological study showed a decrease in the number of encysted larvae, their surrounding cellular infiltrates and increased regenerative muscles in all treated mice. In conclusion, ART possesses a substantial anthelmintic activity against T. spiralis infection in mice both at the enteral and encapsulated phases, yet, significantly lower than MBZ.
Nitrogen-containing atoms in their core structures have been exclusive building blocks in drug discovery and development. One of the most significant and well-known heterocycles is the 1,3,4-thidiazole nucleus, which is found in a wide range of natural products and therapeutic agents. In the present work, certain tris-1,3,4-thiadiazole derivatives (6, 7) were synthesized through a multi-step synthesis approach. All synthesized compounds were characterized using different spectroscopic tools. Previously, thiadiazole compounds as anti-Toxoplasma gondii agents have been conducted and reported in vitro. However, this is the first study to test the anti-Toxoplasma gondii activity of manufactured molecular hybrids thiadiazole in an infected mouse model with the acute RH strain of T. gondii. All the observed results demonstrated compound (7)’s powerful activity, with a considerable reduction in the parasite count reaching 82.6% in brain tissues, followed by liver and spleen tissues (65.35 and 64.81%, respectively). Inflammatory and anti-inflammatory cytokines assessments proved that Compound 7 possesses potent antiparasitic effect. Furthermore, docking tests against TgCDPK1 and ROP18 kinase (two major enzymes involved in parasite invasion and egression) demonstrated compound 7’s higher potency compared to compound 6 and megazol. According to the mentioned results, tris-1,3,4-thiadiazole derivatives under test can be employed as potent antiparasitic agents against the acute RH strain of T. gondii.
Toxoplasmosis may become a fatal disease in immunodeficient, diabetic patients, pregnant women, and infants. Hence, the diligent search for new effective treatment is among the major concerns worldwide. The well-dispersed multi-walled carbon nanotubes lined with ZnO (ZnO-MWCNT), graphene oxide (GO-NPs), and zinc oxide (ZnO-NPs) were successfully synthesized through rapid and facile hydrothermal arc discharge technique (HTADT). The antiparasitic effects of ZnO-NPs, GO-NPs, and ZnO-MWCNT were investigated in mice infected with Toxoplasma gondii. The percent of tachyzoites reduction were detected. The observed results demonstrated that ZnO-MWCNT revealed a significant reduction in the parasite count reached 61% in brain tissues, followed by liver (52%), then spleen (45%). The assessments of antiparasitic, inflammatory, and anti-inflammatory cytokines confirmed the superior activity of ZnO-MWCNT as antiparasitic agent, which paves the way for the employment of ZnO-MWCNT as a treatment for the acute RH strain of T. gondii infection in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.