The investigation comprised an evaluation of the use of the catalyst, 1%Ru/TiO2, to oxidize Phenylmethanol into benzenecarbaldehyde. nitrogen adsorption isotherms and transmittance electron microscope (TEM) were deployed to delineate the properties of the supported catalysts. The findings indicated a superior catalytic performance from 1%Ru/TiO2 prepared using sol-immobilization method. No reaction was taken place with blank reaction or with undoped support. This was deemed to be a consequence of the dispersion and loading of Ru on the TiO2.The reaction conditions, i.e., temperature, reaction time, nature of catalyst and activating quantity, were optimized to achieve superior reaction parameters. This process gave rise to a benzyl alcohol transformation rate of up to 10%; and selectivity of benzaldehyde was 98%.
Biodiesel is considered to be more friendly to the environment than petroleum-based fuels, cheaper and capable for producing greener energy which contributed positively in boosting bio-economy. In this work, waste cooking oil (WCO) is converted into biodiesel utilizing a waste eggshell (CaO) nano-catalyst in an effort to discover environmentally beneficial and economically viable processes for social and economic development. The eggshell-based CaO catalyst developed for the production of ecologically friendly biodiesel at a reduced price is calcined at temperatures between 600 and 1100 °C. The synthesized catalysts were assessed in terms of their physical and chemical qualities via BET, TGA and XRD analysis. This revealed that, besides displaying exceptional transesterification activity, the catalyst synthesised at 950 °C also offered the greatest biodiesel yield. Transesterification, used in biodiesel generation, was used to evaluate the catalytic performance of manufactured catalysts under several reaction circumstances. Under prime reaction conditions i.e., a reaction time of 3 hours, an ethanol-oil molar ratio of 9:1, and a catalyst amount of 4 wt.%, it was ascertained that a catalyst which had calcined at 950 °C demonstrated excellent transesterification activity and delivered a ceiling yield of 88% fatty acid ethyl esters. The production of FAME was confirmed by using gas chromatography-mass spectroscopy (GC-MS). Fuel properties of fatty acid ethyl ester complied with ASTM D 6751 which indicated that it would be an appropriate alternative form of fuel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.