The fight against the COVID-19 pandemic still involves many struggles and challenges. The greatest challenge that most governments are currently facing is the lack of a precise, accurate, and automated mechanism for detecting and tracking new COVID-19 cases. In response to this challenge, this study proposes the first blockchain-based system, called the COVID-19 contact tracing system (CCTS), to verify, track, and detect new cases of COVID-19. The proposed system consists of four integrated components: an infection verifier subsystem, a mass surveillance subsystem, a P2P mobile application, and a blockchain platform for managing all transactions between the three subsystem models. To investigate the performance of the proposed system, CCTS has been simulated and tested against a created dataset consisting of 300 confirmed cases and 2539 contacts. Based on the metrics of the confusion matrix (i.e., recall, precision, accuracy, and F1 Score), the detection evaluation results proved that the proposed blockchain-based system achieved an average of accuracy of 75.79% and a false discovery rate (FDR) of 0.004 in recognizing persons in contact with COVID-19 patients within two different areas of infection covered by GPS. Moreover, the simulation results also demonstrated the success of the proposed system in performing self-estimation of infection probabilities and sending and receiving infection alerts in P2P communications in crowds of people by users. The infection probability results have been calculated using the binomial distribution function technique. This result can be considered unique compared with other similar systems in the literature. The new system could support governments, health authorities, and citizens in making critical decisions regarding infection detection, prediction, tracking, and avoiding the COVID-19 outbreak. Moreover, the functionality of the proposed CCTS can be adapted to work against any other similar pandemics in the future.
Unmanned aerial vehicles (UAVs) have emerged as a powerful technology for introducing untraditional solutions to many challenges in non-military fields and industrial applications in the next few years. However, the limitations of a drone’s battery and the available optimal charging techniques represent a significant challenge in using UAVs on a large scale. This problem means UAVs are unable to fly for a long time; hence, drones’ services fail dramatically. Due to this challenge, optimizing the scheduling of drone charging may be an unusual solution to drones’ battery problems. Moreover, authenticating drones and verifying their charging transactions with charging stations is an essential associated problem. This paper proposes a scheduling and secure drone charging system in response to these challenges. The proposed system was simulated on a generated dataset consisting of 300 drones and 50 charging station points to evaluate its performance. The optimization of the proposed scheduling methodology was based on the particle swarm optimization (PSO) algorithm and game theory-based auction model. In addition, authenticating and verifying drone charging transactions were executed using a proposed blockchain protocol. The optimization and scheduling results showed the PSO algorithm’s efficiency in optimizing drone routes and preventing drone collisions during charging flights with low error rates with an MAE = 0.0017 and an MSE = 0.0159. Moreover, the investigation to authenticate and verify the drone charging transactions showed the efficiency of the proposed blockchain protocol while simulating the proposed system on the Ethereum platform. The obtained results clarified the efficiency of the proposed blockchain protocol in executing drone charging transactions within a short time and low latency within an average of 0.34 s based on blockchain performance metrics. Moreover, the proposed scheduling methodology achieved a 96.8% success rate of drone charging cases, while only 3.2% of drones failed to charge after three scheduling rounds.
Masks are essential, especially in medical institutions, due to the global spread of illnesses and epidemics. This paper presents an unprecedented neural network called the capsule network for face mask recognition. The capsule network has proven to be most suitable for real-life image recognition, as it relies on the spatial relationship features of the image. This paper presents an adapted capsule network by adding a block for deep feature extraction. The proposed system has two phases; the first phase usesVGG16 and VGG19 as a pre-training module for the feature extractions, while the second phase is based on the Capsule network for the face mask recognition phase. Two benchmark datasets are used to test the proposed approach; Real-World Masked Face Dataset (RMFD) and Simulated Masked Face Recognition Dataset (SMFRD).The accuracy of the testing system based on RMFD data sets of CapsNet, VGG16, and VGG19 is 99.87%, 99.90%, and 99.94%, respectively. In contrast, the accuracy of CapsNet with VGG19 reaches 99.94% on the SMFD data. Comprehensive experiments demonstrate the effectiveness of the presented face mask recognition system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.