This study presents a design analysis for the development of highly efficient heat exchangers within stationary metal hydride heat pumps. The design constraints and selected performance criteria are applied to three representative heat exchangers. The proposed thermal model can be applied to select the most efficient heat exchanger design and provides outcomes generally valid in a pre-design stage. Heat transfer effectiveness is the principal performance parameter guiding the selection analysis, the results of which appear to be mildly (up to 13%) affected by the specific Nusselt correlation used. The thermo-physical properties of the heat transfer medium and geometrical parameters are varied in the sensitivity analysis, suggesting that the length of independent tubes is the physical parameter that influences the performance of the heat exchangers the most. The practical operative regions for each heat exchanger are identified by finding the conditions over which the heat removal from the solid bed enables a complete and continuous hydriding reaction. The most efficient solution is a design example that achieves the target effectiveness of 95%.
The seven‐membered beryllium‐containing heterocycle beryllepin, C6H6Be, has been examined computationally at the B3LYP/6‐311++G** density functional level of theory. Beryllepin is best described as a planar singlet heterocyclic conjugated triene with marginal aromatic character containing a C–Be–C moiety forced to be nonlinear (∠C‐Be‐C = 146.25°) by the cyclic constraints of the seven‐membered ring. The molecule can be considered to be derived from a benzene‐like system in which a neutral beryllium atom has been inserted between two adjacent carbon atoms. The 11 other possible “beryllium‐inserted benzenes,” C6H6Ben, n = 2–6, have also been investigated. Only two of these heterocyclic systems, the eight‐membered 1,4‐diberyllocin and the nine‐membered 1,4,7‐triberyllonin, were found to be stable, singlet‐ground‐state systems, albeit with little aromatic character. Of the remaining nine beryllium‐inserted benzenes, with the exception of the 11‐membered ring containing five beryllium atoms and the 12‐membered ring containing six beryllium atoms, which were calculated to exist as a ground state pentet and septet, respectively, all were calculated to be ground state triplet systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.