This article is devoted to the study of the performance of the photovoltaic cell based on perovskite (MAPbI3) in real conditions of sub-Saharan Africa. A model of this cell has been made taking into account the integration of defects at the interfaces. After a study of the sensitivity of these defects, a passivation layer was introduced at the interface to improve the performance of the cell. The influence of temperature and irradiance on the performance of perovskite cells was studied on the one hand with defects at the interfaces and on the other hand with the integration of a passivation layer of defects. The results show a decrease of the performance ratio for the non-passivated cell due to the defects present at the interfaces of the said cell. The models developed under SCAPS-1D were validated by applying it to a real module found in the literature under the same conditions. The performance calculation shows a satisfactory qualitative and quantitative agreement. The results relative to the performance ratios obtained for the simulated models show that perovskite is on the right track for a potential future candidacy to the most suitable technologies for sub-Saharan Africa.
Perovskite is certainly the material of the future of photovoltaics for terrestrial applications. With high efficiencies and advances in stability, perovskite solar cells, modules and mini-modules have already made their appearance in the laboratory and are being tested under real-world conditions to evaluate their real performance. In our study, we predict the performance of perovskite-based photovoltaic panel technology under the conditions of the Sub-Saharan African region by simulation. We started from the current-voltage characteristic of a real perovskite-based module to extract the cell parameters through MATLAB analysis software. These parameters were used to model a cell and then a module in the LTSpice XVII software for simulation. The impact of temperature is studied to evaluate the performance ratio (PR) of a clear day. This study allowed us to evaluate the PR of the perovskite solar module. Displaying PR reaching 90%, perovskite is a future candidate with high potential in the list of the most suitable technologies for our sub-region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.