Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H 2 . Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH 4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H 2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.active subsurface environment | metabolic interactions | sulfur-driven autotrophic denitrifiers | syntrophy | inverted biomass pyramid M icroorganisms living in deep-subsurface ecosystems acquire energy through chemosynthesis and carbon from organic or inorganic sources. Whereas heterotrophs use dissolved organic carbon (DOC) transported from the surface and/or produced in situ, detrital organic deposits buried along with the sediments, and hydrocarbons migrating into petroleum reservoirs, chemolithoautotrophs fix dissolved inorganic carbon (DIC). In oligotrophic systems, subsurface lithoautotrophic microbial ecosystems (SLiMEs) (1) that are fueled by H 2 support the occurrence of autotrophic methanogens, acetogens, and sulfate reducers (2-5). These environments can host highly diverse communities, consisting mostly of prokaryotes, but also multicellular microeukaryotes and viral particles (6-13). Due to the limitation of available nutrients and energy substrates in the oligotrophic subsurface, it is reasonable to hypothesize that subsurface inhabitants with diverse functional traits cooperate syntrophically to maximize energy yield SignificanceMicroorganisms are known to live in the deep ...
Since its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single cell organisms, extending >3 km into the Earth's crust and comprising a significant fraction of the global biosphere 1,2,3,4 . The constraints of temperature, energy, O 2 and space seemed to preclude the possibility of more complex multi-cellular organisms from surviving at these depths. Here we report species of the phylum Nematoda that have been detected in or recovered from 0.9-3.6 km deep fracture water encountered in the deep mines of South Africa, but have not been detected in the mining water. These subsurface nematodes, including a new species Halicephalobus mephisto, tolerate high temperature, reproduce asexually and preferentially feed upon subsurface bacteria. 14 C data indicate that the fracture water in which the nematodes reside is 3-12 kyr old paleometeoric water. Our data suggest that nematodes should be found in other deep hypoxic settings where temperature permits and that they may control the microbial population density by grazing upon fracture surface biofilm patches. Our results expand the known Metazoan biosphere and demonstrate that deep ecosystems are more complex than previously accepted. The discovery of multi-cellular life in the deep subsurface of the Earth also has important implications for the search for subsurface life on other worlds in our solar system. . Halicephalobus mephisto
Subsurface microbial communities comprise a significant fraction of the global prokaryotic biomass; however, the carbon metabolisms that support the deep biosphere have been relatively unexplored. In order to determine the predominant carbon metabolisms within a 3-km deep fracture fluid system accessed via the Tau Tona gold mine (Witwatersrand Basin, South Africa), metagenomic and thermodynamic analyses were combined. Within our system of study, the energy-conserving reductive acetyl-CoA (Wood-Ljungdahl) pathway was found to be the most abundant carbon fixation pathway identified in the metagenome. Carbon monoxide dehydrogenase genes that have the potential to participate in (1) both autotrophic and heterotrophic metabolisms through the reversible oxidization of CO and subsequent transfer of electrons for sulfate reduction, (2) direct utilization of H 2 and (3) methanogenesis were identified. The most abundant members of the metagenome belonged to Euryarchaeota (22%) and Firmicutes (57%)-by far, the highest relative abundance of Euryarchaeota yet reported from deep fracture fluids in South Africa and one of only five Firmicutes-dominated deep fracture fluids identified in the region. Importantly, by combining the metagenomics data and thermodynamic modeling of this study with previously published isotopic and community composition data from the South African subsurface, we are able to demonstrate that Firmicutes-dominated communities are associated with a particular hydrogeologic environment, specifically the older, more saline and more reducing waters.
Bacteria can reduce toxic and carcinogenic Cr(VI) to insoluble and less toxic Cr(III). Thermus scotoductus SA-01, a South African gold mine isolate, has been shown to be able to reduce a variety of metals, including Cr(VI). Here we report the purification to homogeneity and characterization of a novel chromate reductase. The oxidoreductase is a homodimeric protein, with a monomer molecular mass of approximately 36 kDa, containing a noncovalently bound flavin mononucleotide cofactor. The chromate reductase is optimally active at a pH of 6.3 and at 65°C and requires Ca 2؉ or Mg 2؉ for activity. Enzyme activity was also dependent on NADH or NADPH, with a preference for NADPH, coupling the oxidation of approximately 2 and 1.5 mol NAD(P)H to the reduction of 1 mol Cr(VI) under aerobic and anaerobic conditions, respectively. The K m values for Cr(VI) reduction were 3.5 and 8.4 M for utilizing NADH and NADPH as electron donors, respectively, with corresponding V max values of 6.2 and 16.0 mol min ؊1 mg ؊1 . The catalytic efficiency (k cat /K m ) of chromate reduction was 1.14 ؋ 10 6 M ؊1 s ؊1 , which was >50-fold more efficient than that of the quinone reductases and >180-fold more efficient than that of the nitroreductases able to reduce Cr(VI). The chromate reductase was identified to be encoded by an open reading frame of 1,050 bp, encoding a single protein of 38 kDa under the regulation of an Escherichia coli 70 -like promoter. Sequence analysis shows the chromate reductase to be related to the old yellow enzyme family, in particular the xenobiotic reductases involved in the oxidative stress response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.