Experimental studies evaluating the effects of food availability on the movement of free-ranging animals generally involve food supplementation rather than suppression. Both approaches can yield similar insights, but we were interested in the potential for using food suppression for the management and control of invasive predators, in particular, the brown treesnake (Boiga irregularis) on Guam. However, understanding a species' response to food resources is critical before employing such a strategy. We studied the movements of 24 radio-tagged B. irregularis initially caught within four 4-ha unfenced plots in rodent-abundant (control) and rodent-suppressed (treatment) grassland habitats over a 40-day period. Because monitoring duration differed among snakes, we also analyzed short-term (16-day) activity areas. Over the 16 days, snakes associated with rodent-suppressed plots had 86% larger activity areas (ha), 94% greater dispersal distances (m), and 43% greater movement rates (m/h) than snakes associated with control plots. Boiga irregularis moved extensively, but these movements were not always reflected in the size of the snake's total activity area. Movement rates did not differ between sexes, but snakes in above-average body condition moved greater distances per hour than those in below-average condition irrespective of treatment. Our study indicates that a relatively small prey suppression effort can cause almost immediate and significant changes in B. irregularis movement. On Guam, prey suppression might enhance control efforts by either increasing trap capture success or discouraging snakes from entering areas of conservation or management concern. However, the outcome of using prey suppression as a control tool in areas threatened with the accidental introduction of the brown treesnake is more difficult to predict and might have negative consequences such as elevated dispersal rates.
Roads immersed in conservation areas will increase in number, size, and traffic over the next decade, and thus, understanding their effects on forest-dependent wildlife is crucial for improving current management practices and reducing the negative impacts of roads on sensitive species. We examined the influence of route 32 (a.k.a. Guápiles Highway) on temporal and spatial changes in the structure of the avifauna of Braulio Carrillo National Park, Costa Rica, a site crossed by this road along 25 km. The highway connects the capital city of San José with the Harbor of Limón in the Caribbean Sea (142 km). Although the road is narrow (12 m in width and comprised by two lanes along most of the route) it services over 1.5 million motor vehicles per year, 12 % are heavy trucks and trailers. We expected the highway to divide the avifauna, and thus to observe significant differences in species structure on opposite sides of the road. We described changes in bird diversity between wet and dry seasons at Las Palmas and Ceibo trails located on opposite sides of the highway (14 point counts per trail), and evaluated how abundance and diversity varied with road distance. Censuses took place during wet and dry seasons from 2002 to 2005. We listed 245 species and 6 035 observations during the 4-yr survey. Rare species dominated the avifauna (65 % of species < 5 observations), and species overlap between trails was high (Sorensen= 71 %; Morisita= 0.96). Species accumulation curves varied little among trails, yielding 190 species. Resident species represented 70 % of observations, followed by elevational (15 %) and long-distance migrants (1-2 %). Understory species were the most abundant (60 %) followed by canopy birds (30 %). Species turnover rate was 55 % between seasons, but species composition between trails remained homogeneous. Overall, birds were avoiding the road (abundance increased away from the road) although other diversity parameters (richness, dominance, Shannon index, and equitability) were not influenced by road proximity. Although the avifauna remained homogeneous on both sides of the road, which did not support the fragmentation hypothesis, the highway reduced the abundance and diversity of specialized understory insectivores associated with primary forests near the road. This highway will expand outside the National Park (from 2 to 4 lanes along 107 km from Río Frío to Limón) in the next years, which will increase traffic volume and road impacts within the Park. Roads are increasing across highly diverse tropical areas justifying the need for management practices based on the identification of sensitive groups. Rev. Biol. Trop. 64 (4): 1383-1399. Epub 2016 December 01.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.