Bringing together the key ideas from nonequilibrium statistical mechanics and powerful methodology from quantum field theory, this book captures the essence of nonequilibrium quantum field theory. Beginning with the foundational aspects of the theory, the book presents important concepts and useful techniques, discusses issues of basic interest, and shows how thermal field, linear response, kinetic theories and hydrodynamics emerge. It also illustrates how these concepts and methodology are applied to current research topics including nonequilibrium phase transitions, thermalization in relativistic heavy ion collisions, the nonequilibrium dynamics of Bose-Einstein condensation, and the generation of structures from quantum fluctuations in the early Universe. Divided into five parts, with each part addressing a particular stage in the conceptual and technical development of the subject, this self-contained book is a valuable reference for graduate students and researchers in particle physics, gravitation, cosmology, atomic-optical and condensed matter physics.
We continue our earlier investigation of the backreaction problem in semiclassical gravity with the Schwinger-Keldysh or closed-time-path (CTP) functional formalism using the language of the decoherent history formulation of quantum mechanics. Making use of its intimate relation with the Feynman-Vernon influence functional (IF) method, we examine the statistical mechanical meaning and show the interrelation of the many quantum processes involved in the backreaction problem, such as particle creation, decoherence and dissipation. We show how noise and fluctuation arise naturally from the CTP formalism. We derive an expression for the CTP effective action in terms of the Bogolubov coefficients and show how noise is related to the fluctuations in the number of particles created. In so doing we have extended the old framework of semiclassical gravity, based on the mean field theory of Einstein equation with a source given by the expectation value of the energy-momentum tensor, to that based on a Langevin-type equation, where the dynamics of fluctuations of spacetime is driven by the quantum fluctuations of the matter field. This generalized framework is useful for the investigation of quantum processes in the early universe involving fluctuations, vacuum stability and phase transtion phenomena and the non-equilibrium thermodynamics of black holes. It is also essential to an understanding of the transition from any quantum theory of gravity to classical general relativity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.