Botrytis cinerea is the causal agent of gray mold disease and is responsible for the loss of millions of dollars in crops in worldwide. Currently, this pathogen exhibits increasing resistance to conventional fungicides; therefore, better control methods and novel compounds with a more specific mechanism of action but without biocidal effects, are required. In this work, several natural compounds to control B. cinerea were analyzed in vitro. Detected effects were dependent on the stage of fungus development, and 3-phenyl-1-propanol displayed the most potent inhibition of in vitro germination, germ tube development, and sporulation. However, it had lower protection of leaves and postharvest fruit in plant infection. Isoeugenol and 1-phenylethanol exhibited lower inhibition of in vitro germination and sporulation, but at the highest concentrations, they inhibited germ tube elongation. Although the lowest rates of foliage infection were recorded using isoeugenol and 3-phenyl-1-propanol, 1-phenylethanol significantly decreased the disease in postharvest tomato fruit, with an efficacy like Mancozeb, but at 18 times lower micromolar concentration. All compounds resulted in high cell viability after spores were removed from the treatment solution exhibited high cell viability, suggesting a non-biocidal effect. The diversity of in vitro and in-plant effects seems to indicate a different mechanism of action.
Botrytis cinerea is a phytopathogenic fungus that causes large crop and post-harvest losses. Therefore, new and effective strategies are needed to control the disease and to reduce resistance to fungicides. Modulating pathogenicity and virulence by manipulating microbial communication is a promising strategy. This communication mechanism, called Quorum Sensing (QS), has already been reported in bacteria and yeasts; however, it has not yet been studied in B. cinerea. To establish the existence of this biochemical process in B. cinerea, we prepared extracts at different growth times (D1-D12), which were applied to fresh cultures of the same fungi. The chemical analysis of the extracts obtained from several fermentations showed different compositions and biological activities. We confirmed the presence of several phytotoxins, as well as compounds 1-phenylethanol and 3-phenylpropanol. Day five extract (0.1%) inhibited conidia germination and elongation of germ tubes, day seven extract (1%) produced the greatest phytotoxic effect in tomato leaves, and day nine extract (0.1%) was a sporulation inhibitor. In contrast, the extracts from days 7, 9, and 12 of fermentation (0.1% and 0.01%) promoted pellet and biofilm formation. Sporulation was slightly induced at 0.01%, while at 0.1% there was a great inhibition. At the highest extract concentrations, a biocidal effect was detected, but at the lowest, we observed a QS-like effect, regulating processes such as filamentation, morphogenesis, and pathogenesis. These results of the biological activity and composition of extracts suggest the existence of a QS-like mechanism in B. cinerea, which could lead to new non-biocidal alternatives for its control through interference in the pathogenicity and virulence mechanisms of the fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.