Background: Imbalanced TGF/BMP-mediated signaling has been identified as a principal stimulus of EndMT. Results: The EndMT master regulator SNAIL is a direct target of HIF1␣. Conclusion: Hypoxia-induced EndMT is mediated by HIF1␣ through direct targeting of SNAIL. Significance: This study provides conceptual clues of how endothelial cells undergoing EndMT relate to tip cells associated with sprouting angiogenesis in response to hypoxia.
In this paper, we identify three different MRAPs in zebrafish, zfMRAP1, zfMRAP2a and zfMRAP2b, and demonstrate that zfMC2R is not functional in the absence of MRAP expression. ZfMRAP1 expression was restricted to adipose tissue and the anterior kidney whereas MRAP2a and MRAP2b were expressed in all the tissues tested. Quantification of surface receptor and immunofluorescence studies indicated that the receptor is unable to translocate to membrane in the absence of MRAP isoforms. MRAP1 and MRAP2b are localized in the plasma membrane in the absence of zfMC2R expression but MRAP2b is retained in perinuclear position. MRAP1 and MRAP2a displayed an equivalent translocation capacity to the membrane of zfMC2R but only zfMRAP1 expression led to intracellular cAMP increases after ACTH stimulation. ZfMRAP2b had no effect on zfMC2R activity but both zfMRAP2 isoforms enhanced the zfMRAP1-assisted cAMP intracellular increase, suggesting an interaction between zfMRAP1 and zfMRAP2s when regulating zfMC2R activity.
Exit from mitosis requires the inactivation of mitotic cyclin-dependent kinases (CDKs). In the budding yeast, Saccharomyces cerevisiae, inactivation of CDKs during late mitosis involves degradation of B-type cyclins as well as direct inhibition of cyclin-CDK complexes by the CDK-inhibitor protein Sic1 (refs 1,2,3). Several striking similarities exist between Sic1 and Cdc6, a DNA replication factor essential for the formation of pre-replicative complexes at origins of DNA replication. Transcription of both genes is activated during late mitosis by a process dependent on Swi5 (ref. 10). Like Sic1, Cdc6 binds CDK complexes in vivo and downregulates them in vitro. Here we show that Cdc6, like Sic1, also contributes to inactivation of CDKs during late mitosis in S. cerevisiae. Deletion of the CDK-interacting domain of Cdc6 does not inhibit the function of origins of DNA replication during S phase, but instead causes a delay in mitotic exit; this delay is accentuated in the absence of Sic1 or of cyclin degradation. By contributing to mitotic exit and inactivation of CDKs, Cdc6 helps to create the conditions that are required for its subsequent role in the formation of pre-replicative complexes at origins of DNA replication.
Long-chain polyunsaturated fatty acids (LC-PUFAs) are essential in important physiological processes, many of which are particularly vital during embryonic development. This study investigated the expression of genes encoding enzymes involved in LC-PUFA biosynthesis, namely fatty acyl desaturase (Fad) and Elovl5- and Elovl2-like elongases, during early embryonic development of zebrafish. First, zebrafish elovl2 cDNA was isolated and functionally characterised in yeast, showing high specificity towards C20- and C22-PUFAs, compared to C18 substrates. Second, spatial-temporal expression for elovl2 and the previously cloned fad and elovl5 were studied during zebrafish early embryonic development. Temporal expression shows that all three genes are expressed from the beginning of embryogenesis (zygote), suggesting maternal mRNA transfer to the embryo. However, a complete activation of the biosynthetic pathway seems to be delayed until 12 hpf, when noticeable increases of fad and elovl2 transcripts were observed, in parallel with high docosahexaenoic acid levels in the embryo. Spatial expression was studied by whole-mount in situ hybridisation in 24 hpf embryos, showing that fad and elovl2 are highly expressed in the head area where neuronal tissues are developing. Interestingly, elovl5 shows specific expression in the pronephric ducts, suggesting an as yet unknown role in fatty acid metabolism during zebrafish early embryonic development. The yolk syncytial layer also expressed all three genes, suggesting an important role in remodelling of yolk fatty acids during zebrafish early embryogenesis. Tissue distribution in zebrafish adults demonstrates that the target genes are expressed in all tissues analysed, with liver, intestine and brain showing the highest expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.