The objective of this study was to determine whether the combination therapy of intrapancreatic autologous stem cell infusion (ASC) and hyperbaric oxygen treatment (HBO) before and after ASC can improve islet function and metabolic control in patients with type 2 diabetes mellitus (T2DM). This prospective phase 1 study enrolled 25 patients with T2DM who received a combination therapy of intrapancreatic ASC and periinfusion HBO between March 2004 and October 2006 at Stem Cells Argentina Medical Center Buenos Aires, Argentina. Clinical variables (body mass index, oral hypoglycemic drugs, insulin requirement) and metabolic variables (fasting plasma glucose, C-peptide, HbA1c, and calculation of C-peptide/glucose ratio) were assessed over quartile periods starting at baseline and up to 1 year follow-up after intervention. Means were calculated in each quartile period and compared to baseline. Seventeen male and eight female patients were enrolled. Baseline variables expressed as means ± SEs were: age 55 ± 2.14 years, diabetes duration 13.2 ± 1.62 years, insulin dose 34.8 ± 2.96 U/day, and BMI 27.11 ± 0.51. All metabolic variables showed significant improvement when comparing baseline to 12 months follow-up, respectively: fasting glucose 205.6 ± 5.9 versus 105.2 ± 14.2 mg/dl, HbA1c 8.8 ± 0.2 versus 6.0 ± 0.4%, fasting C-peptide 1.5 ± 0.2 versus 3.3 ± 0.3 ng/ml, C-peptide/glucose ratio 0.7 ± 0.2 versus 3.5 ± 0.3, and insulin requirements 34.8 ± 2.9 versus 2.5 ± 6.7 U/day. BMI remained constant over the 1-year follow-up. Combined therapy of intrapancreatic ASC infusion and HBO can improve metabolic control and reduce insulin requirements in patients with T2DM. Further randomized controlled clinical trials will be required to confirm these findings.
The two complementary techniques high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and X-ray absorption near edge structure (XANES) analysis were used to assess arsenic speciation in freshwater phytoplankton and zooplankton collected from arsenic-contaminated lakes in Yellowknife (Northwest Territories, Canada). Arsenic concentrations in lake water ranged from 7 μg L(-1) in a noncontaminated lake to 250 μg L(-1) in mine-contaminated lakes, which resulted in arsenic concentrations ranging from 7 to 340 mg kg(-1) d.w. in zooplankton organisms (Cyclops sp.) and from 154 to 894 mg kg(-1) d.w. in phytoplankton. The main arsenic compounds identified by HPLC-ICP-MS in all plankton were inorganic arsenic (from 38% to 98% of total arsenic). No other arsenic compounds were found in phytoplankton, but zooplankton organisms showed the presence of organoarsenic compounds, the most common being the sulfate arsenosugar, up to 47% of total arsenic, with traces of phosphate sugar, glycerol sugar, methylarsonate (MMA), and dimethylarsinate (DMA). In the uncontaminated Grace Lake, zooplankton also contained arsenobetaine (AB). XANES characterization of arsenic in the whole plankton samples showed As(V)-O as the only arsenic compound in phytoplankton, and As(III)-S and As(V)-O compounds as the two major inorganic arsenic species in zooplankton. The proportion of organoarsenicals and inorganic arsenic in zooplankton depends upon the arsenic concentration in lakes and shows the impact of arsenic contamination: zooplankton from uncontaminated lake has higher proportions of organoarsenic compounds and contains arsenobetaine, while zooplankton from contaminated area contains mostly inorganic arsenic.
BackgroundHyperbaric oxygen (HBO2) therapy has been proposed to treat hypoxaemia and reduce inflammation in COVID-19. Our objective was to analyse safety and efficacy of HBO2 in treatment of hypoxaemia in patients with COVID-19 and evaluate time to hypoxaemia correction.MethodsThis was a multicentre, open-label randomised controlled trial conducted in Buenos Aires, Argentina, between July and November 2020. Patients with COVID-19 and severe hypoxaemia (SpO2 ≤90% despite oxygen supplementation) were assigned to receive either HBO2 treatment or the standard treatment for respiratory symptoms for 7 days. HBO2 treatment was planned for ≥5 sessions (1 /day) for 90 min at 1.45 atmosphere absolute (ATA). Outcomes were time to normalise oxygen requirement to SpO2 ≥93%, need for mechanical respiratory assistance, development of acute respiratory distress syndrome and mortality within 30 days. A sample size of 80 patients was estimated, with a planned interim analysis after determining outcomes on 50% of patients.ResultsThe trial was stopped after the interim analysis. 40 patients were randomised, 20 in each group, age was 55.2±9.2 years. At admission, frequent symptoms were dyspnoea, fever and odynophagia; SpO2 was 85.1%±4.3% for the whole group. Patients in the treatment group received an average of 6.2±1.2 HBO2 sessions. Time to correct hypoxaemia was shorter in treatment group versus control group; median 3 days (IQR 1.0–4.5) versus median 9 days (IQR 5.5–12.5), respectively (p<0.010). OR for recovery from hypoxaemia in the HBO2 group at day 3 compared with the control group was 23.2 (95% CI 1.6 to 329.6; p=0.001) Treatment had no statistically significant effect on acute respiratory distress syndrome, mechanical ventilation or death within 30 days after admission.ConclusionOur findings support the safety and efficacy of HBO2 in the treatment of COVID-19 and severe hypoxaemia.Trial registration numberNCT04477954.
The objective of this study was to compare standard treatment versus the combination of intrapancreatic autologous stem cell (ASC) infusion and hyperbaric oxygen treatment (HBOT) before and after ASC in the metabolic control of patients with type 2 diabetes mellitus (T2DM). This study was a prospective, randomized controlled trial. The combined intervention consisted of 10 sessions of HBOT before the intrapancreatic infusion of ASC and 10 sessions afterwards. ASCs were infused into the main arterial supply of the pancreas to maximize the presence of the stem cells where the therapeutic effect is most desired. A total of 23 patients were included (control group = 10, intervention group = 13). Age, gender, diabetes duration, number of medications taken, body weight and height, and insulin requirements were recorded at baseline and every three months. Also, body mass index, fasting plasma glucose, C-peptide, and HbA1c, C-peptide/glucose ratio (CPGR) were measured every three months for one year. HbA1c was significantly lower in the intervention group compared with control throughout follow-up. Overall, 77% of patients in the intervention group and 30% of patients in the control group demonstrated a decrease of HbA1c at 180 days (compared with baseline) of at least 1 unit. Glucose levels were significantly lower in the intervention group at all timepoints during follow-up. C-peptide levels were significantly higher in the intervention group during follow-up and at one year: 1.9 ± 1.0 ng/mL versus 0.7 ± 0.4 ng/mL in intervention versus control groups, respectively, p = 0.0021. CPGR was higher in the intervention group at all controls during follow-up. The requirement for insulin was significantly lower in the intervention group at 90, 180, 270, and 365 days. Combined therapy of intrapancreatic ASC infusion and HBOT showed increased metabolic control and reduced insulin requirements in patients with T2DM compared with standard treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.