We study the impact of a modified expansion rate on the dark matter relic abundance in a class of scalar-tensor theories. The scalar-tensor theories we consider are motivated from string theory constructions, which have conformal as well as disformally coupled matter to the scalar. We investigate the effects of such a conformal coupling to the dark matter relic abundance for a wide range of initial conditions, masses and crosssections. We find that exploiting all possible initial conditions, the annihilation crosssection required to satisfy the dark matter content can differ from the thermal average cross-section in the standard case. We also study the expansion rate in the disformal case and find that physically relevant solutions require a nontrivial relation between the conformal and disformal functions. We study the effects of the disformal coupling in an explicit example where the disformal function is quadratic.2 In string theory, the Einstein frame refers to the frame in which the dilaton and graviton degrees of freedom are decoupled, while the string (or Jordan) frame is that in which they are not. Further, the dilaton field as well as all other moduli (scalar) fields not relevant for the cosmological discussion are stabilised, massive, and are therefore decoupled from the low energy effective theory. In the literature of scalar-tensor theories however, the Einstein and Jordan frames are identified with respect to the (usually single) scalar field to which gravity is coupled, but such scalar has no particular physical nor geometrical interpretation.
We examine the evolution of assembly bias using a semi-analytical model of galaxy formation implemented in the Millennium-WMAP7 N-body simulation. We consider fixed number density galaxy samples ranked by stellar mass or star formation rate. We investigate how the clustering of haloes and their galaxy content depend on halo formation time and concentration, and how these relationships evolve with redshift. At z = 0 the dependences of halo clustering on halo concentration and formation time are similar. At higher redshift, halo assembly bias weakens for haloes selected by age, and reverses and increases for haloes selected by concentration, consistent with previous studies. The variation of the halo occupation with concentration and formation time is also similar at z = 0 and changes at higher redshifts. Here, the occupancy variation with halo age stays mostly constant with redshift but decreases for concentration. Finally, we look at the evolution of assembly bias reflected in the galaxy distribution by examining the galaxy correlation functions relative to those of shuffled galaxy samples which remove the occupancy variation. This correlation functions ratio monotonically decreases with larger redshift and for lower number density samples, going below unity in some cases, leading to reduced galaxy clustering. While the halo occupation functions themselves vary, the assembly bias trends are similar whether selecting galaxies by stellar mass or star formation rate. Our results provide further insight into the origin and evolution of assembly bias. Our extensive occupation function measurements and fits are publicly available and can be used to create realistic mock catalogues.
We compare the molecular and ionized gas velocity dispersions of nine nearby turbulent disks, analogs to high-redshift galaxies, from the DYNAMO sample using new Atacama Large Millimeter/submillimeter Array and GMOS/Gemini observations. We combine our sample with 12 galaxies at z ∼ 0.5–2.5 from the literature. We find that the resolved velocity dispersion is systematically lower by a factor 2.45 ± 0.38 for the molecular gas compared to the ionized gas, after correcting for thermal broadening. This offset is constant within the galaxy disks and indicates the coexistence of a thin molecular gas disk and a thick ionized one. This result has a direct impact on the Toomre Q and pressure derived in galaxies. We obtain pressures ∼0.22 dex lower on average when using the molecular gas velocity dispersion, σ 0,mol. We find that σ 0,mol increases with gas fraction and star formation rate. We also obtain an increase with redshift and show that the EAGLE and FIRE simulations overall overestimate σ 0,mol at high redshift. Our results suggest that efforts to compare the kinematics of gas using ionized gas as a proxy for the total gas may overestimate the velocity dispersion by a significant amount in galaxies at the peak of cosmic star formation. When using the molecular gas as a tracer, our sample is not consistent with predictions from star formation models with constant efficiency, even when including transport as a source of turbulence. Feedback models with variable star formation efficiency, ϵ ff, and/or feedback efficiency, p */m *, better predict our observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.